The proportion of Weierstrass semigroups

被引:11
|
作者
Kaplan, Nathan [1 ]
Ye, Lynnelle [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Numerical semigroup; Weierstrass semigroup; Genus of numerical semigroup; Frobenius number; NUMERICAL SEMIGROUPS;
D O I
10.1016/j.jalgebra.2012.09.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a problem of Komeda concerning the proportion of numerical semigroups which do not satisfy Buchweitz' necessary criterion for a semigroup to occur as the Weierstrass semigroup of a point on an algebraic curve. A result of Eisenbud and Harris gives a sufficient condition for a semigroup to occur as a Weierstrass semigroup. We show that the family of semigroups satisfying this condition has density zero in the set of all semigroups. In the process, we prove several more general results about the structure of a typical numerical semigroup. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 50 条
  • [21] Weierstrass semigroups at every point of the Suzuki curve
    Bartoli, Daniele
    Montanucci, Maria
    Zini, Giovanni
    ACTA ARITHMETICA, 2021, 197 (01) : 1 - 20
  • [22] On Weierstrass semigroups and sets: a review with new results
    Carvalho, Cicero
    Kato, Takao
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 195 - 210
  • [23] On Weierstrass semigroups of double coverings of hyperelliptic curves
    Gilvan Oliveira
    Francisco L. R. Pimentel
    Semigroup Forum, 2015, 90 : 721 - 730
  • [24] NUMBER OF WEAK GALOIS-WEIERSTRASS POINTS WITH WEIERSTRASS SEMIGROUPS GENERATED BY TWO ELEMENTS
    Komeda, Jiryo
    Takahashi, Takeshi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1463 - 1474
  • [25] Weierstrass Semigroups from Cyclic Covers of Hyperelliptic Curves
    Ethan Cotterill
    Nathan Pflueger
    Naizhen Zhang
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [26] DOUBLE COVERINGS OF CURVES AND NON-WEIERSTRASS SEMIGROUPS
    Komeda, Jiryo
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) : 312 - 324
  • [27] On Weierstrass semigroups and the redundancy of improved geometric Goppa codes
    Pellikaan, R
    Torres, F
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2512 - 2519
  • [28] Weierstrass semigroups and nodal curves of type p, q
    Knebl, H.
    Kunz, E.
    Waldi, R.
    JOURNAL OF ALGEBRA, 2011, 348 (01) : 315 - 335
  • [29] Gorenstein Curves with Quasi-Symmetric Weierstrass Semigroups
    Gilvan Oliveira
    Karl-Lotto Stöhr
    Geometriae Dedicata, 1997, 67 : 45 - 63
  • [30] Weierstrass semigroups whose minimum positive integers are even
    Jiryo Komeda
    Archiv der Mathematik, 2007, 89 : 52 - 59