The proportion of Weierstrass semigroups

被引:11
|
作者
Kaplan, Nathan [1 ]
Ye, Lynnelle [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Numerical semigroup; Weierstrass semigroup; Genus of numerical semigroup; Frobenius number; NUMERICAL SEMIGROUPS;
D O I
10.1016/j.jalgebra.2012.09.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a problem of Komeda concerning the proportion of numerical semigroups which do not satisfy Buchweitz' necessary criterion for a semigroup to occur as the Weierstrass semigroup of a point on an algebraic curve. A result of Eisenbud and Harris gives a sufficient condition for a semigroup to occur as a Weierstrass semigroup. We show that the family of semigroups satisfying this condition has density zero in the set of all semigroups. In the process, we prove several more general results about the structure of a typical numerical semigroup. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 391
页数:15
相关论文
共 50 条
  • [1] Weierstrass semigroups on Castelnuovo curves
    Pflueger, Nathan
    JOURNAL OF ALGEBRA, 2021, 582 : 117 - 135
  • [2] On -Hyperelliptic Weierstrass Semigroups of Genus and
    Komeda, Jiryo
    Ohbuch, Akira
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 209 - 218
  • [3] REALIZING NUMERICAL SEMIGROUPS AS WEIERSTRASS SEMIGROUPS: A COMPUTATIONAL APPROACH
    Pimentel, Francisco L. R.
    Oliveira, Gilvan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2006, 6 (03): : 445 - 454
  • [4] Weierstrass semigroups from Kummer extensions
    Yang, Shudi
    Hu, Chuangqiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 264 - 284
  • [5] Weierstrass semigroups on the Skabelund maximal curve
    Beelen, Peter
    Landi, Leonardo
    Montanucci, Maria
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 72
  • [6] A STONE-WEIERSTRASS THEOREM FOR SEMIGROUPS
    SRINIVASAN, TP
    TEWARI, UB
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (06) : 1125 - +
  • [7] Non-cyclic Weierstrass semigroups
    Kim, SJ
    Komeda, J
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 993 - 1005
  • [8] On reducible non-Weierstrass semigroups
    Ignacio Garcia-Garcia, Juan
    Marin-Aragon, Daniel
    Torres, Fernando
    Vigneron-Tenorio, Alberto
    OPEN MATHEMATICS, 2021, 19 (01): : 1134 - 1144
  • [9] Non-Weierstrass numerical semigroups
    Komeda, J
    SEMIGROUP FORUM, 1998, 57 (02) : 157 - 185
  • [10] Generalized Weierstrass semigroups and their Poincare series
    Moyano-Fernandez, J. J.
    Tenorio, W.
    Torres, F.
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 58 : 46 - 69