Multiscale micromechanical analysis of alkali-activated fly ash-slag paste

被引:128
|
作者
Fang, Guohao [1 ]
Zhang, Mingzhong [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Alkali-activated concrete; Microstructure; Elastic modulus; Hardness; Nanoindentation; BLAST-FURNACE SLAG; A-S-H; CEMENT-BASED MATERIALS; MECHANICAL-PROPERTIES; PORE STRUCTURE; ALUMINOSILICATE HYDRATE; ENGINEERING PROPERTIES; STRENGTH PROPERTIES; PHASE EVOLUTION; ELASTIC-MODULUS;
D O I
10.1016/j.cemconres.2020.106141
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Current demand for highly sustainable concrete, e.g. alkali-activated fly ash-slag (AAFS) concrete, urges understanding the links between microstructure and micromechanical properties of this binder. This paper presents a systematic investigation into the microstructure and micromechanical properties of AAFS paste from nano-scale to micro-scale. Nanoindentation was used to evaluate the micromechanical properties, while the microstructure was characterised using Si-29 nuclear magnetic resonance, Fourier transform infrared spectroscopy, backscattered electron microscopy, and mercury intrusion porosimetry. The results indicate that N-A-S-H gels have a relatively low elastic modulus due to their high level of structural disorder and gel porosity, while the CA-S-H gels and N-C-A-S-H gels with a low level of structural disorder and gel porosity have a relatively high elastic modulus. The elasticity of reaction products and their relative volumetric proportions mainly determine the macroscopic elasticity of AAFS paste, while the porosity and pore size distribution primarily condition its macroscopic strength.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Natural Carbonation of Alkali-Activated Fly Ash and Slag Pastes
    Nedeljkovic, Marija
    Zuo, Yibing
    Arbi, Kamel
    Ye, Guang
    HIGH TECH CONCRETE: WHERE TECHNOLOGY AND ENGINEERING MEET, 2018, : 2213 - 2223
  • [43] Magnesia Modification of Alkali-Activated Slag Fly Ash Cement
    Shen Weiguo
    Wang Yiheng
    Zhang Tao
    Zhou Mingkai
    Li Jiasheng
    Cui Xiaoyu
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (01): : 121 - 125
  • [44] Mechanical and microstructural properties of alkali-activated fly ash-slag material under sustained moderate temperature effect
    Ma, Hongqiang
    Wu, Chao
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [45] Strength and Ultrasonic Characteristics of Alkali-Activated Fly Ash-Slag Geopolymer Concrete after Exposure to Elevated Temperatures
    Ren, Weibo
    Xu, Jinyu
    Bai, Erlei
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (02)
  • [46] External Sulphate Attack on Alkali-Activated Slag and Slag/Fly Ash Concrete
    Bondar, Dali
    Nanukuttan, Sreejith
    BUILDINGS, 2022, 12 (02)
  • [47] Chemo-mechanical properties of alkali-activated slag/fly ash paste incorporating white mud
    Sun, Renjuan
    Fang, Chen
    Zhang, Hongzhi
    Ling, Yifeng
    Feng, Jingjing
    Qi, Hui
    Ge, Zhi
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 291
  • [48] Micromechanical Properties of Alkali-Activated Slag-Based Paste Explored by Nanoindentation
    Chuang Y.-C.
    Chou Y.-T.
    Chen C.-T.
    Chen H.-A.
    Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2022, 34 (05): : 435 - 440
  • [49] Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes
    Yang, Tao
    Zhu, Huajun
    Zhang, Zuhua
    Gao, Xuan
    Zhang, Changsen
    Wu, Qisheng
    CEMENT AND CONCRETE RESEARCH, 2018, 109 : 198 - 207
  • [50] Research on the effect of 60 °C thermal cycling on the properties of alkali-activated fly ash-slag materials: A new perspective
    Ma, Hongqiang
    Fu, Congcong
    Dai, Enyang
    Huang, Kang
    Zhang, Shaochen
    Feng, Jingjing
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 416