Multiscale micromechanical analysis of alkali-activated fly ash-slag paste

被引:128
|
作者
Fang, Guohao [1 ]
Zhang, Mingzhong [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Alkali-activated concrete; Microstructure; Elastic modulus; Hardness; Nanoindentation; BLAST-FURNACE SLAG; A-S-H; CEMENT-BASED MATERIALS; MECHANICAL-PROPERTIES; PORE STRUCTURE; ALUMINOSILICATE HYDRATE; ENGINEERING PROPERTIES; STRENGTH PROPERTIES; PHASE EVOLUTION; ELASTIC-MODULUS;
D O I
10.1016/j.cemconres.2020.106141
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Current demand for highly sustainable concrete, e.g. alkali-activated fly ash-slag (AAFS) concrete, urges understanding the links between microstructure and micromechanical properties of this binder. This paper presents a systematic investigation into the microstructure and micromechanical properties of AAFS paste from nano-scale to micro-scale. Nanoindentation was used to evaluate the micromechanical properties, while the microstructure was characterised using Si-29 nuclear magnetic resonance, Fourier transform infrared spectroscopy, backscattered electron microscopy, and mercury intrusion porosimetry. The results indicate that N-A-S-H gels have a relatively low elastic modulus due to their high level of structural disorder and gel porosity, while the CA-S-H gels and N-C-A-S-H gels with a low level of structural disorder and gel porosity have a relatively high elastic modulus. The elasticity of reaction products and their relative volumetric proportions mainly determine the macroscopic elasticity of AAFS paste, while the porosity and pore size distribution primarily condition its macroscopic strength.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [31] Analysis of reaction degree and factors of alkali-activated fly ash/slag
    Wang, Bowen
    Liu, Yang
    Luo, Dong
    Yang, Yiwei
    Huang, Dunwen
    Peng, Hui
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (18) : 955 - 964
  • [32] Study on optimization of mixing ratio and shrinkage property of alkali-activated ultrafine fly ash-slag mortar
    Wang, Jun
    Wang, Haofan
    Li, Zhaoxi
    Yan, Jun
    Materials Today Communications, 2024, 41
  • [33] Effects of Mg-based admixtures on chloride diffusion in alkali-activated fly ash-slag mortars
    Zhang, Jingxiao
    Ma, Yuwei
    Zhang, Zuhua
    Yang, Xiaocong
    Nong, Xingzhong
    Wang, Hao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [34] Effect of active MgO on the hydration kinetics characteristics and microstructures of alkali-activated fly ash-slag materials
    Ma, Hongqiang
    Li, Xiaomeng
    Zheng, Xuan
    Niu, Xiaoyan
    Fang, Youliang
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 361
  • [35] Effect of admixture on the pore structure refinement and enhanced performance of alkali-activated fly ash-slag concrete
    Keulen, A.
    Yu, Q. L.
    Zhang, S.
    Grunewald, S.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 162 : 27 - 36
  • [36] Chloride binding of alkali-activated slag/fly ash cements
    Zhang, Jian
    Shi, Caijun
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 226 : 21 - 31
  • [37] Properties of alkali-activated fly ash/slag repair mortars
    Ghafoori, N.
    Najimi, M.
    CONCRETE SOLUTIONS: PROCEEDINGS OF CONCRETE SOLUTIONS, 5TH INTERNATIONAL CONFERENCE ON CONCRETE REPAIR, 2014, : 77 - 81
  • [38] Magnesia Modification of Alkali-Activated Slag Fly Ash Cement
    沈卫国
    Journal of Wuhan University of Technology(Materials Science), 2011, (01) : 121 - 125
  • [39] Magnesia modification of alkali-activated slag fly ash cement
    Weiguo Shen
    Yiheng Wang
    Tao Zhang
    Mingkai Zhou
    Jiasheng Li
    Xiaoyu Cui
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26 : 121 - 125
  • [40] Curing Conditions of Alkali-Activated Fly Ash and Slag Mortar
    Dong, Minhao
    Elchalakani, Mohamed
    Karrech, Ali
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (06)