Homoclinic Bifurcations and Chaos in the Fishing Principle for the Lorenz-like Systems

被引:6
|
作者
Leonov, G. A. [1 ]
Mokaev, R. N. [1 ,2 ]
Kuznetsov, N., V [1 ,2 ,3 ]
Mokaev, T. N. [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg, Russia
[2] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
[3] RAS, Inst Problems Mech Engn, Moscow, Russia
来源
基金
俄罗斯科学基金会;
关键词
Lorenz system; Lorenz-like system; Lorenz attractor; homoclinic orbit; homoclinic bifurcation; strange attractor; LYAPUNOV DIMENSION; STRANGE ATTRACTOR; HIDDEN ATTRACTOR; SHIMIZU-MORIOKA; TRAJECTORIES; EXISTENCE; CASCADE; ORBITS; BIRTH; CHEN;
D O I
10.1142/S0218127420501242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article using an analytical method called Fishing principle we obtain the region of parameters, where the existence of a homoclinic orbit to a zero saddle equilibrium in the Lorenz-like system is proved. For a qualitative description of the different types of homoclinic, bifurcations, a numerical analysis of the obtained region of parameters is organized, which leads to the discovery of new bifurcation scenarios.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity
    Leonov, G. A.
    Kuznetsov, N. V.
    Mokaev, T. N.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 28 (1-3) : 166 - 174
  • [42] Fresh Look at Lorenz-like System
    Nguyen, Hang T. T.
    Meleshenko, Peter A.
    Semenov, Mikhail E.
    Kuznetsov, Ilya E.
    Gorlov, Vladimir A.
    Klinskikh, Alexander F.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2255 - 2259
  • [43] Lorenz-Like Chaotic Attractors Revised
    Araujo, Vitor
    Pacifico, Maria Jose
    DYNAMICS, GAMES AND SCIENCE I, 2011, 1 : 61 - 79
  • [44] Lorenz attractors in unfoldings of homoclinic-flip bifurcations
    Golmakani, A.
    Homburg, A. J.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (01): : 61 - 76
  • [45] HOMOCLINIC ORBITS AND CHAOS IN THE GENERALIZED LORENZ SYSTEM
    Yang, Ting
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (03): : 1097 - 1108
  • [46] Lorenz-like systems and classical dynamical equations with memory forcing: An alternate point of view for singling out the origin of chaos
    Festa, R
    Mazzino, A
    Vincenzi, D
    PHYSICAL REVIEW E, 2002, 65 (04):
  • [47] HIERARCHICAL APPROACH TO MODELING OF NONLINEAR FLOWS - APPLICATION TO LORENZ-LIKE SYSTEMS
    BROGGI, G
    BADII, R
    FINARDI, M
    HELVETICA PHYSICA ACTA, 1990, 63 (06): : 817 - 818
  • [48] Fishing principle for homoclinic and heteroclinic trajectories
    G. A. Leonov
    Nonlinear Dynamics, 2014, 78 : 2751 - 2758
  • [49] Fishing principle for homoclinic and heteroclinic trajectories
    Leonov, G. A.
    NONLINEAR DYNAMICS, 2014, 78 (04) : 2751 - 2758
  • [50] Analytical and numerical investigation of two families of Lorenz-like dynamical systems
    Panchev, S.
    Spassova, T.
    Vitanov, N. K.
    CHAOS SOLITONS & FRACTALS, 2007, 33 (05) : 1658 - 1671