Homoclinic Bifurcations and Chaos in the Fishing Principle for the Lorenz-like Systems

被引:6
|
作者
Leonov, G. A. [1 ]
Mokaev, R. N. [1 ,2 ]
Kuznetsov, N., V [1 ,2 ,3 ]
Mokaev, T. N. [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg, Russia
[2] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
[3] RAS, Inst Problems Mech Engn, Moscow, Russia
来源
基金
俄罗斯科学基金会;
关键词
Lorenz system; Lorenz-like system; Lorenz attractor; homoclinic orbit; homoclinic bifurcation; strange attractor; LYAPUNOV DIMENSION; STRANGE ATTRACTOR; HIDDEN ATTRACTOR; SHIMIZU-MORIOKA; TRAJECTORIES; EXISTENCE; CASCADE; ORBITS; BIRTH; CHEN;
D O I
10.1142/S0218127420501242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article using an analytical method called Fishing principle we obtain the region of parameters, where the existence of a homoclinic orbit to a zero saddle equilibrium in the Lorenz-like system is proved. For a qualitative description of the different types of homoclinic, bifurcations, a numerical analysis of the obtained region of parameters is organized, which leads to the discovery of new bifurcation scenarios.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors
    S. V. Gonchenko
    L. P. Shilnikov
    D. V. Turaev
    Regular and Chaotic Dynamics, 2009, 14
  • [32] Octonionic Lorenz-like condition
    MURAT TANIŞLI
    BERNARD JANCEWICZ
    Pramana, 2012, 78 : 165 - 174
  • [33] On discrete Lorenz-like attractors
    Gonchenko, Sergey
    Gonchenko, Alexander
    Kazakov, Alexey
    Samylina, Evgeniya
    CHAOS, 2021, 31 (02)
  • [34] LORENZ-LIKE CHAOS IN A PARTIAL-DIFFERENTIAL EQUATION FOR A HEATED FLUID LOOP
    YORKE, JA
    YORKE, ED
    MALLETPARET, J
    PHYSICA D, 1987, 24 (1-3): : 279 - 291
  • [35] On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors
    Gonchenko, S. V.
    Shilnikov, L. P.
    Turaev, D. V.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01): : 137 - 147
  • [36] ON LORENZ-LIKE DYNAMIC SYSTEMS WITH STRENGTHENED NONLINEARITY AND NEW PARAMETERS
    Liao, Bo
    Tang, Yuan Yan
    An, Lu
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2010, 8 (02) : 293 - 311
  • [37] Transformations that preserve the uniqueness of the differential form for Lorenz-like systems
    Lainscsek, Claudia
    Mendes, Eduardo M. A. M.
    Salgado, Gustavo H. O.
    Sejnowski, Terrence J.
    CHAOS, 2023, 33 (10)
  • [38] COMPARISON OF LORENZ-LIKE LASER BEHAVIOR WITH THE LORENZ MODEL
    HUBNER, U
    KLISCHE, W
    ABRAHAM, NB
    WEISS, CO
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 517 - 520
  • [39] PERIODS AND ENTROPY FOR LORENZ-LIKE MAPS
    ALSEDA, L
    LLIBRE, J
    MISIUREWICZ, M
    TRESSER, C
    ANNALES DE L INSTITUT FOURIER, 1989, 39 (04) : 929 - 952
  • [40] Nonlinear analysis in a Lorenz-like system
    Dias, Fabio Scalco
    Mello, Luis Fernando
    Zhang, Jian-Gang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3491 - 3500