A Pedophysical Relationship between X-ray Computed Tomography and Electrical Resistivity Data

被引:4
|
作者
Cimpoiasu, Mihai O. [1 ,2 ]
Kuras, Oliver [2 ]
Pridmore, Tony [3 ]
Mooney, Sacha J. [1 ]
机构
[1] Univ Nottingham, Sch Biosci, Div Agr & Environm Sci, Loughborough LE12 5RD, Leics, England
[2] British Geol Survey, Geophys Tomog Team, Keyworth NG12 5GG, Notts, England
[3] Univ Nottingham, Sch Comp Sci, Wollaton Rd, Nottingham NG8 1BB, Notts, England
关键词
SOIL-WATER CONTENT; APPLE ORCHARD;
D O I
10.2113/JEEG19-079
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Quantitatively linking observations from independent non-invasive soil assessment methods enhances our ability to understand root zone processes. Electrical Resistivity Tomography (ERT) and X-ray Computed Tomography (CT) are two advanced non-invasive technologies routinely employed in soil science. ERT allows 4D process monitoring (eg, solute transport) and is sensitive to changes in moisture content (MC) and soil texture. X-ray CT is a higher resolution method used to appraise soil structure. We measured the variation of electrical resistivity and X-ray absorption with gravimetric moisture content (GMC) for two distinct soil types. Experimental results were compared with existing pedophysical relationships that express these dependencies. Based on the good fit between measurements and model predictions, we formulated a new pedophysical relationship that links directly the two soil properties. This will allow a direct translation between ERT and X-ray data for the study of root-zone parameters under well-defined experimental circumstances.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 50 条
  • [31] X-ray computed tomography in life sciences
    Shelley D. Rawson
    Jekaterina Maksimcuka
    Philip J. Withers
    Sarah H. Cartmell
    BMC Biology, 18
  • [32] Image Analysis in X-ray Computed Tomography
    Seletchi, Emilia Dana
    Sutac, Victor
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING: VIRTUAL LEARNING - VIRTUAL REALITY: MODELS & METHODOLOGIES, TECHNOLOGIES, SOFTWARE SOLUTIONS, 2006, : 187 - +
  • [33] Ptychographic X-ray computed tomography at the nanoscale
    Dierolf, Martin
    Menzel, Andreas
    Thibault, Pierre
    Schneider, Philipp
    Kewish, Cameron M.
    Wepf, Roger
    Bunk, Oliver
    Pfeiffer, Franz
    NATURE, 2010, 467 (7314) : 436 - U82
  • [34] X-Ray Luminescence Computed Tomography Via Selective X-Ray Excitation
    Pratx, G.
    Carpenter, C.
    Sun, C.
    Xing, L.
    MEDICAL PHYSICS, 2010, 37 (06)
  • [35] X-ray Digital Radiography and Computed Tomography
    Morigi, Maria Pia
    Albertin, Fauzia
    JOURNAL OF IMAGING, 2022, 8 (05)
  • [36] Signal statistics of x-ray computed tomography
    Whiting, BR
    MEDICAL IMAGING 2002: PHYSICS OF MEDICAL IMAGING, 2002, 4682 : 53 - 60
  • [37] Development of dimensional X-ray computed tomography
    National Metrology Institute of Japan , National Institute of Advanced Industrial Science and Technology , 1-1-1 Umezono, Tsukuba
    Ibaraki
    305-8563, Japan
    Int. J. Autom. Technol., 5 (567-571):
  • [38] NOISE LIMITATIONS IN X-RAY COMPUTED TOMOGRAPHY
    TRETIAK, OJ
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1978, 2 (04) : 477 - 480
  • [39] Ptychographic X-ray computed tomography at the nanoscale
    Martin Dierolf
    Andreas Menzel
    Pierre Thibault
    Philipp Schneider
    Cameron M. Kewish
    Roger Wepf
    Oliver Bunk
    Franz Pfeiffer
    Nature, 2010, 467 : 436 - 439
  • [40] APPLIED X-RAY COMPUTED-TOMOGRAPHY
    BUYNAK, CF
    BOSSI, RH
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1995, 99 (1-4): : 772 - 774