Large-Scale 3D Optical Mapping and Quantitative Analysis of Nanoparticle Distribution in Tumor Vascular Microenvironment

被引:12
|
作者
Koo, Dong-Jun [4 ,5 ]
Choi, Jinahn [2 ]
Ahn, Minchul [2 ,3 ]
Ahn, Benjamin H. [2 ,4 ]
Min, Dal-Hee [1 ,2 ]
Kim, Sung-Yon [2 ,3 ]
机构
[1] Seoul Natl Univ, Inst Mol Biol & Genet, Program Neurosci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea
[3] Lemonex Inc, Inst Biotherapeut Convergence Technol, Seoul 08826, South Korea
[4] Seoul Natl Univ, Inst Mol Biol & Genet, Seoul 08826, South Korea
[5] Seoul Natl Univ, Program Neurosci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
MESOPOROUS SILICA NANOPARTICLES; SINGLE-CELL RESOLUTION; WHOLE-BODY; DRUG PENETRATION; BLOOD-VESSELS; TISSUE; DELIVERY; SIZE; NANOMEDICINE; ACCUMULATION;
D O I
10.1021/acs.bioconjchem.0c00263
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Nanoparticles (NPs) are a promising carrier for cancer therapeutics. Systemically administered NPs are transported to tumor tissues via the bloodstream, extravasated from micro-vessels, and delivered to cancer cells. The distribution of NPs in the tumor vascular microenvironment critically determines the therapeutic efficacy of NP-delivered drugs, but its precise assessment in 3D across a large volume remains challenging. Here, an analytical platform-termed OMNIA (for Optical Mapping of Nanoparticles and Image Analysis)-integrating tissue clearing, high-resolution optical imaging, and semiautomated image analysis is presented, which enables accurate, unbiased, and quantitative analysis of the distribution of NPs in relation to the vasculature across a large 3D volume. Application of OMNIA to tumor tissues revealed higher accumulation and more efficient extravasation of NPs in the tumor periphery than the core. Time-course analysis demonstrated that the accumulation of NPs in tumor peaked at 24 h after injection, but the relative distribution of NPs from the vasculature remained remarkably stable over time. Comparisons between 45- and 200-nm-sized NPs showed a lower accumulation of smaller NPs in tumors relative to the liver, yet better vessel permeation. Together, our results demonstrate that OMNIA facilitates precise and reliable evaluation of NP biodistribution, and mechanistic investigations on NP delivery to tumor tissues.
引用
收藏
页码:1784 / 1794
页数:11
相关论文
共 50 条
  • [21] 3D Object Detection on large-scale dataset
    Zhao, Yan
    Zhu, Jihong
    Liang, Haoyu
    Chen, Lyujie
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [22] Large-Scale 3D Printing: The Way Forward
    Al Jassmi, Hamad
    Al Najjar, Fady
    Mourad, Abdel-Hamid Ismail
    2017 5TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING, 2018, 324
  • [23] A Large-Scale 3D Object Recognition dataset
    Solund, Thomas
    Buch, Anders Glent
    Kruger, Norbert
    Aanaes, Henrik
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 73 - 82
  • [24] Large-Scale 3D Infant Face Model
    Schnabel, Till N.
    Lill, Yoriko
    Benitez, Benito K.
    Nalabothu, Prasad
    Metzler, Philipp
    Mueller, Andreas A.
    Gross, Markus
    Gozcu, Baran
    Solenthaler, Barbara
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT III, 2024, 15003 : 217 - 227
  • [25] CodeCity: 3D Visualization of Large-Scale Software
    Wettel, Richard
    Lanza, Michele
    ICSE'08 PROCEEDINGS OF THE THIRTIETH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2008, : 921 - 922
  • [26] BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images
    Peng, Hanchuan
    Hawrylycz, Michael
    Roskams, Jane
    Hill, Sean
    Spruston, Nelson
    Meijering, Erik
    Ascoli, Giorgio A.
    NEURON, 2015, 87 (02) : 252 - 256
  • [27] Modeling and representations of large-scale 3D scenes
    Zhu, Zhigang
    Kanade, Takeo
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 78 (2-3) : 119 - 120
  • [28] 3D Printing of Large-Scale Biodegradable Material
    Tay, Yi Wei Daniel
    Soh, Eugene
    Le Ferrand, Hortense
    Tan, Ming Jen
    CONSTRUCTION 3D PRINTING, 4-IC3DCP CONFERENCE 2023, 2024, : 139 - 148
  • [29] Towards Large-scale 3D Face Recognition
    Gilani, Syed Zulqarnain
    Mian, Ajmal
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 682 - 689
  • [30] Modeling and Representations of Large-Scale 3D Scenes
    Zhigang Zhu
    Takeo Kanade
    International Journal of Computer Vision, 2008, 78 : 119 - 120