Symmetric partitioned Runge-Kutta methods for differential equations on Lie groups

被引:0
|
作者
Wandelt, M. [1 ]
Guenther, M. [1 ]
Knechtli, F. [1 ]
Striebel, M. [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Nat Wissensch, D-42119 Wuppertal, Germany
关键词
Lie group methods; Partitioned Runge-Kutta methods; Symmetric integrators; Lattice QCD; HYBRID MONTE-CARLO; MOLECULAR-DYNAMICS; ALGORITHMS; QUANTUM;
D O I
10.1016/j.apnum.2012.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a higher order symmetric partitioned Runge-Kutta method for a coupled system of differential equations on Lie groups. We start with a discussion on partitioned Runge-Kutta methods on Lie groups of arbitrary order. As symmetry is not met for higher orders, we generalize the method to a symmetric partitioned Runge-Kutta (SPRK) scheme. Furthermore, we derive a set of coefficients for convergence order 4. The SPRK integration method can be used, for example, in simulations of quantum field theories. Finally, we compare the new SPRK scheme numerically with the Stormer-Verlet scheme, one of the state-of-the-art schemes used in this subject. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1740 / 1748
页数:9
相关论文
共 50 条
  • [1] Runge-Kutta methods on Lie groups
    Hans Munthe-Kaas
    [J]. BIT Numerical Mathematics, 1998, 38 : 92 - 111
  • [2] Runge-Kutta methods on Lie groups
    Munthe-Kaas, H
    [J]. BIT, 1998, 38 (01): : 92 - 111
  • [3] Partitioned Runge-Kutta methods in Lie-group setting
    Engo, K
    [J]. BIT NUMERICAL MATHEMATICS, 2003, 43 (01) : 21 - 39
  • [4] Runge-Kutta methods for fuzzy differential equations
    Palligkinis, S. Ch.
    Papageorgiou, G.
    Famelis, I. Th.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 97 - 105
  • [5] On multisymplecticity of partitioned Runge-Kutta methods
    Ryland, Brett N.
    Mclachlan, Robert I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03): : 1318 - 1340
  • [6] Multirate partitioned Runge-Kutta methods
    Günther, M
    Kværno, A
    Rentrop, P
    [J]. BIT, 2001, 41 (03): : 504 - 514
  • [7] SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    SUN, G
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (04) : 365 - 372
  • [8] Multirate Partitioned Runge-Kutta Methods
    M. Günther
    A. Kværnø
    P. Rentrop
    [J]. BIT Numerical Mathematics, 2001, 41 : 504 - 514
  • [9] Runge-Kutta Methods for Ordinary Differential Equations
    Butcher, J. C.
    [J]. NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 : 37 - 58
  • [10] Runge-Kutta methods for Fuzzy Differential Equations
    Palligkinis, S. Ch.
    Papageorgiou, G.
    Famelis, I. Th.
    [J]. Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 444 - 448