Runge-Kutta methods on Lie groups

被引:0
|
作者
Hans Munthe-Kaas
机构
[1] University of Bergen,Department of Informatics
来源
BIT Numerical Mathematics | 1998年 / 38卷
关键词
Manifold; Correction Function; Iterate Commutator; Tensor Product Basis; Correct Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We construct generalized Runge-Kutta methods for integration of differential equations evolving on a Lie group. The methods are using intrinsic operations on the group, and we are hence guaranteed that the numerical solution will evolve on the correct manifold. Our methods must satisfy two different criteria to achieve a given order.• CoefficientsAi,j andbj must satisfy the classical order conditions. This is done by picking the coefficients of any classical RK scheme of the given order.• We must construct functions to correct for certain non-commutative effects to the given order.
引用
收藏
页码:92 / 111
页数:19
相关论文
共 50 条
  • [1] Runge-Kutta methods on Lie groups
    Munthe-Kaas, H
    [J]. BIT, 1998, 38 (01): : 92 - 111
  • [2] Symmetric partitioned Runge-Kutta methods for differential equations on Lie groups
    Wandelt, M.
    Guenther, M.
    Knechtli, F.
    Striebel, M.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (12) : 1740 - 1748
  • [3] Lie-Butcher theory for Runge-Kutta methods
    MuntheKaas, H
    [J]. BIT, 1995, 35 (04): : 572 - 587
  • [4] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    [J]. APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326
  • [5] THE RUNGE-KUTTA METHODS
    THOMAS, B
    [J]. BYTE, 1986, 11 (04): : 191 - &
  • [6] Partitioned Runge-Kutta methods in Lie-group setting
    Engo, K
    [J]. BIT NUMERICAL MATHEMATICS, 2003, 43 (01) : 21 - 39
  • [7] LINEARLY-IMPLICIT RUNGE-KUTTA METHODS BASED ON IMPLICIT RUNGE-KUTTA METHODS
    BRUDER, J
    [J]. APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) : 33 - 40
  • [8] Multiplicative runge-kutta methods
    Aniszewska, Dorota
    [J]. NONLINEAR DYNAMICS, 2007, 50 (1-2) : 265 - 272
  • [9] Runge-Kutta methods and renormalization
    Brouder, C
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2000, 12 (03): : 521 - 534
  • [10] REDUCIBLE RUNGE-KUTTA METHODS
    COOPER, GJ
    [J]. BIT, 1985, 25 (04): : 675 - 680