Symmetric partitioned Runge-Kutta methods for differential equations on Lie groups

被引:0
|
作者
Wandelt, M. [1 ]
Guenther, M. [1 ]
Knechtli, F. [1 ]
Striebel, M. [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Nat Wissensch, D-42119 Wuppertal, Germany
关键词
Lie group methods; Partitioned Runge-Kutta methods; Symmetric integrators; Lattice QCD; HYBRID MONTE-CARLO; MOLECULAR-DYNAMICS; ALGORITHMS; QUANTUM;
D O I
10.1016/j.apnum.2012.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a higher order symmetric partitioned Runge-Kutta method for a coupled system of differential equations on Lie groups. We start with a discussion on partitioned Runge-Kutta methods on Lie groups of arbitrary order. As symmetry is not met for higher orders, we generalize the method to a symmetric partitioned Runge-Kutta (SPRK) scheme. Furthermore, we derive a set of coefficients for convergence order 4. The SPRK integration method can be used, for example, in simulations of quantum field theories. Finally, we compare the new SPRK scheme numerically with the Stormer-Verlet scheme, one of the state-of-the-art schemes used in this subject. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1740 / 1748
页数:9
相关论文
共 50 条