On the regularity of maximal operators

被引:68
|
作者
Carneiro, Emanuel [1 ]
Moreira, Diego [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
maximal operator; bilinear maximal; Sobolev spaces; weak differentiability; weak continuity;
D O I
10.1090/S0002-9939-08-09515-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity of the bilinear maximal operator when applied to Sobolev functions, proving that it maps W-1,W-p(R) x W-1,W-q(R) -> W-1,W-r(R) with 1 < p, q < infinity and r >= 1, boundedly and continuously. The same result holds on R-n when r > 1. We also investigate the almost everywhere and weak convergence under the action of the classical Hardy-Littlewood maximal operator, both in its global and local versions.
引用
收藏
页码:4395 / 4404
页数:10
相关论文
共 50 条
  • [41] Maximal parabolic regularity for divergence operators including mixed boundary conditions
    Haller-Dintelmann, Robert
    Rehberg, Joachim
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (05) : 1354 - 1396
  • [42] On non-autonomous maximal regularity for elliptic operators in divergence form
    Auscher, Pascal
    Egert, Moritz
    ARCHIV DER MATHEMATIK, 2016, 107 (03) : 271 - 284
  • [43] Continuity and regularity for local multi-fractional new maximal operators
    Li, Rui
    Tao, Shuang-Ping
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [44] LP maximal regularity for vector-valued Schrödinger operators
    Addona, Davide
    Leone, Vincenzo
    Lorenzi, Luca
    Rhandi, Abdelaziz
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 187 : 171 - 206
  • [45] Maximal regularity for elliptic operators with second-order discontinuous coefficients
    Metafune, G.
    Negro, L.
    Spina, C.
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3613 - 3637
  • [46] Elliptic operators and maximal regularity on periodic little-Holder spaces
    LeCrone, Jeremy
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (02) : 295 - 325
  • [47] Maximal Lp-regularity for elliptic operators with VMO-coefficients
    Heck, H
    Hieber, M
    JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (02) : 332 - 359
  • [48] R-boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators
    Denk, Robert
    Krainer, Thomas
    MANUSCRIPTA MATHEMATICA, 2007, 124 (03) : 319 - 342
  • [49] Maximal -regularity
    van Neerven, Jan
    Veraar, Mark
    Weis, Lutz
    JOURNAL OF EVOLUTION EQUATIONS, 2015, 15 (02) : 361 - 402
  • [50] Stability of stochastic maximal Lp-regularity under admissible observation operators
    Bounacer, Hamza
    Hadd, Said
    ARCHIV DER MATHEMATIK, 2025,