On the regularity of maximal operators

被引:68
|
作者
Carneiro, Emanuel [1 ]
Moreira, Diego [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
maximal operator; bilinear maximal; Sobolev spaces; weak differentiability; weak continuity;
D O I
10.1090/S0002-9939-08-09515-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity of the bilinear maximal operator when applied to Sobolev functions, proving that it maps W-1,W-p(R) x W-1,W-q(R) -> W-1,W-r(R) with 1 < p, q < infinity and r >= 1, boundedly and continuously. The same result holds on R-n when r > 1. We also investigate the almost everywhere and weak convergence under the action of the classical Hardy-Littlewood maximal operator, both in its global and local versions.
引用
收藏
页码:4395 / 4404
页数:10
相关论文
共 50 条
  • [21] REGULARITY OF COMMUTATORS OF MULTILINEAR MAXIMAL OPERATORS WITH LIPSCHITZ SYMBOLS
    Chen, Ting
    Liu, Feng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (01): : 109 - 134
  • [22] Endpoint Regularity of the Discrete Multisublinear Fractional Maximal Operators
    Xiao Zhang
    Results in Mathematics, 2021, 76
  • [23] Endpoint regularity of discrete multilinear maximal and minimal operators
    Li, Jing
    Liu, Feng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (11)
  • [24] Endpoint Regularity of the Discrete Multisublinear Fractional Maximal Operators
    Zhang, Xiao
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [25] Sobolev Regularity of Maximal Operators on Infinite Connected Graphs
    Liu, Feng
    Zhang, Xiao
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
  • [26] Applications of discrete maximal Lp regularity for finite element operators
    Matthias Geissert
    Numerische Mathematik, 2007, 108 : 121 - 149
  • [27] Regularity and the Brøndsted–Rockafellar Properties of Maximal Monotone Operators
    Andrei Verona
    Maria Elena Verona
    Set-Valued Analysis, 2006, 14 : 149 - 157
  • [28] Regularity and the Brondsted-Rockafellar properties of maximal monotone operators
    Verona, Andrei
    Verona, Maria Elena
    SET-VALUED ANALYSIS, 2006, 14 (02): : 149 - 157
  • [29] CONICAL MAXIMAL REGULARITY FOR ELLIPTIC OPERATORS VIA HARDY SPACES
    Huang, Yi
    ANALYSIS & PDE, 2017, 10 (05): : 1081 - 1088
  • [30] Differential operators on conic manifolds: Maximal regularity and parabolic equations
    Coriasco, S.
    Schrohe, E.
    Seiler, J.
    Bulletin de la Societe Royale des Sciences de Liege, 2001, 70 (4-6): : 207 - 229