Varying-coefficient functional linear regression models

被引:16
|
作者
Cardot, Herve [1 ]
Sarda, Pascal [2 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, F-21078 Dijon, France
[2] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse, France
关键词
B-splines; conditional covariance function; conditional principal components regression; ill-posed problem; penalization;
D O I
10.1080/03610920802105176
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers a generalization of the functional linear regression in which an additional real variable influences smoothly the functional coefficient. We thus define a varying-coefficient regression model for functional data. We propose two estimators based, respectively, on conditional functional principal regression and on local penalized regression splines and prove their pointwise consistency. We check, with the prediction one day ahead of ozone concentration in the city of Toulouse, the ability of such nonlinear functional approaches to produce competitive estimations.
引用
下载
收藏
页码:3186 / 3203
页数:18
相关论文
共 50 条