confidence region;
interval;
empirical likelihood;
local polynomial regression;
generalized linear model;
varying-coefficient models;
EFFICIENT ESTIMATION;
CONFIDENCE-REGIONS;
INFERENCES;
D O I:
10.1080/02664763.2010.498500
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Generalized partially linear varying-coefficient models (GPLVCM) are frequently used in statistical modeling. However, the statistical inference of the GPLVCM, such as confidence region/interval construction, has not been very well developed. In this article, empirical likelihood-based inference for the parametric components in the GPLVCM is investigated. Based on the local linear estimators of the GPLVCM, an estimated empirical likelihood-based statistic is proposed. We show that the resulting statistic is asymptotically non-standard chi-squared. By the proposed empirical likelihood method, the confidence regions for the parametric components are constructed. In addition, when some components of the parameter are of particular interest, the construction of their confidence intervals is also considered. A simulation study is undertaken to compare the empirical likelihood and the other existing methods in terms of coverage accuracies and average lengths. The proposed method is applied to a real example.
Guo Liang FAN Hong Xia XU School of Mathematics PhysicsAnhui Polytechnic UniversityAnhui PRChinaDepartment of MathematicsTongji UniversityShanghai PRChina
论文数: 0引用数: 0
h-index: 0
Guo Liang FAN Hong Xia XU School of Mathematics PhysicsAnhui Polytechnic UniversityAnhui PRChinaDepartment of MathematicsTongji UniversityShanghai PRChina
机构:
E China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200241, Peoples R China
Huang, Zhensheng
Zhang, Riquan
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200241, Peoples R China
Shanxi Datong Univ, Dept Math, Datong 037009, Shanxi, Peoples R ChinaE China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200241, Peoples R China
机构:
ChongQing Technol & Business, Sch Math & Stat, Chongqing 400067, Peoples R ChinaChongQing Technol & Business, Sch Math & Stat, Chongqing 400067, Peoples R China
Hu, Xuemei
Wang, Zhizhong
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Comp Technol, Changsha 410075, Hunan, Peoples R ChinaChongQing Technol & Business, Sch Math & Stat, Chongqing 400067, Peoples R China
Wang, Zhizhong
Zhao, Zhiwei
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Comp Technol, Changsha 410075, Hunan, Peoples R ChinaChongQing Technol & Business, Sch Math & Stat, Chongqing 400067, Peoples R China
机构:
Shandong Univ, Sch Math Sci, Jinan 250100, Peoples R China
Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R ChinaShandong Univ, Sch Math Sci, Jinan 250100, Peoples R China
Wang, Xiuli
Li, Gaorong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R ChinaShandong Univ, Sch Math Sci, Jinan 250100, Peoples R China
Li, Gaorong
Lin, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Math Sci, Jinan 250100, Peoples R ChinaShandong Univ, Sch Math Sci, Jinan 250100, Peoples R China
机构:
Anhui Polytech Univ, Sch Math & Phys, Wuhu 241000, Peoples R China
Anhui Normal Univ, Sch Math & Comp Sci, Wuhu, Peoples R ChinaAnhui Polytech Univ, Sch Math & Phys, Wuhu 241000, Peoples R China
Fan, Guo-Liang
Huang, Zhen-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Sci & Technol, Sch Sci, Nanjing, Jiangsu, Peoples R ChinaAnhui Polytech Univ, Sch Math & Phys, Wuhu 241000, Peoples R China