On Fibonacci functions with Fibonacci numbers

被引:9
|
作者
Han, Jeong Soon [1 ]
Kim, Hee Sik [2 ]
Neggers, Joseph [3 ]
机构
[1] Hanyang Univ, Dept Appl Math, Ahnsan 426791, South Korea
[2] Hanyang Univ, Dept Math, Res Inst Nat Sci, Seoul 133791, South Korea
[3] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
Fibonacci function; f-even (f-odd) function; Golden ratio;
D O I
10.1186/1687-1847-2012-126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider Fibonacci functions on the real numbers R, i.e., functions f : R -> R such that for all x is an element of R, f(x + 2) = f(x + 1) + f(x). We develop the notion of Fibonacci functions using the concept of f f-even and f-odd functions. Moreover, we show that if f is a Fibonacci function then lim(x ->infinity) f(x+1)/f(x) = 1+root 5/2.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] An inequality with Fibonacci numbers and trigonometric functions Solution
    Mondal, Soumitra
    [J]. FIBONACCI QUARTERLY, 2018, 56 (04): : 377 - 377
  • [22] Generating functions, Fibonacci numbers and rational knots
    Stoimenow, A.
    [J]. JOURNAL OF ALGEBRA, 2007, 310 (02) : 491 - 525
  • [23] ON THE MATRIX APPROACH TO FIBONACCI NUMBERS AND THE FIBONACCI PSEUDOPRIMES
    POLLIN, JM
    SCHOENBERG, IJ
    [J]. FIBONACCI QUARTERLY, 1980, 18 (03): : 261 - 268
  • [24] DISCOVERING FIBONACCI NUMBERS, FIBONACCI WORDS, AND A FIBONACCI FRACTAL IN THE TOWER OF HANOI
    Hinz, Andreas M.
    Stockmeyer, Paul K.
    [J]. FIBONACCI QUARTERLY, 2019, 57 (05): : 72 - 83
  • [25] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    [J]. MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70
  • [26] Fibonacci Identities via Fibonacci Functions
    Adegoke, Kunle
    [J]. JOURNAL OF INTEGER SEQUENCES, 2024, 27 (06)
  • [27] On the distance between products of consecutive Fibonacci numbers and powers of Fibonacci numbers
    Bravo, Jhon J.
    Komatsu, Takao
    Luca, Florian
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (01): : 181 - 198
  • [28] FORMULA FOR FIBONACCI NUMBERS FROM A NEW APPROACH TO GENERALIZED FIBONACCI NUMBERS
    BERNSTEIN, L
    [J]. FIBONACCI QUARTERLY, 1976, 14 (04): : 358 - 368
  • [29] Generalized Fibonacci functions and sequences of generalized Fibonacci functions
    Lee, GY
    Kim, JS
    Cho, TH
    [J]. FIBONACCI QUARTERLY, 2003, 41 (02): : 108 - 121
  • [30] Summation of the Product of Certain Functions and Generalized Fibonacci Numbers
    Chong, Chin-Yoon
    Ang, Siew-Ling
    Ho, C. K.
    [J]. INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014), 2014, 1635 : 80 - 85