An inequality with Fibonacci numbers and trigonometric functions Solution

被引:0
|
作者
Mondal, Soumitra
机构
来源
FIBONACCI QUARTERLY | 2018年 / 56卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:377 / 377
页数:1
相关论文
共 50 条
  • [1] An inequality with Fibonacci numbers and trigonometric functions Proposal
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    [J]. FIBONACCI QUARTERLY, 2018, 56 (04): : 376 - 376
  • [2] Fibonacci Numbers and Trigonometric Functions
    Cook, Charles K.
    [J]. FIBONACCI QUARTERLY, 2008, 46-47 (04): : 379 - 380
  • [3] Combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers
    Chen, Yulei
    Zhu, Yingming
    Guo, Dongwei
    [J]. AIMS MATHEMATICS, 2024, 9 (04): : 9348 - 9363
  • [4] FIBONACCI NUMBERS AND TRIGONOMETRIC IDENTITIES
    Garnier, N.
    Ramare, O.
    [J]. FIBONACCI QUARTERLY, 2008, 46-47 (01): : 56 - 61
  • [5] AN INEQUALITY FOR FIBONACCI NUMBERS
    Alzer, Horst
    Luca, Florian
    [J]. MATHEMATICA BOHEMICA, 2022, 147 (04): : 587 - 590
  • [6] An Inequality with Fibonacci Numbers
    Ohtsuka, Hideyuki
    Bruckman, Paul
    Luis Diaz-Barrero, Jose
    [J]. FIBONACCI QUARTERLY, 2013, 51 (01): : 95 - +
  • [7] FIBONACCI NUMBERS VIA TRIGONOMETRIC EXPRESSIONS
    BEDROSIAN, SD
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1973, 295 (02): : 175 - 177
  • [8] TRIGONOMETRIC EXPRESSIONS FOR FIBONACCI AND LUCAS NUMBERS
    Sury, B.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (02): : 199 - 208
  • [9] On Fibonacci functions with Fibonacci numbers
    Han, Jeong Soon
    Kim, Hee Sik
    Neggers, Joseph
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [10] Fibonacci polynomials and trigonometric functions
    Seiffert, HJ
    [J]. FIBONACCI QUARTERLY, 2005, 43 (04): : 378 - 379