Combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers

被引:1
|
作者
Chen, Yulei [1 ]
Zhu, Yingming [2 ]
Guo, Dongwei [2 ]
机构
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou, Henan, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Jiangsu, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 04期
关键词
Fibonacci numbers; Lucas numbers; binomial coefficients; trigonometric functions;
D O I
10.3934/math.2024455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, by means of the generating function method and the De Moivre's formula, we derive some interesting combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers. One of them confirms the formula proposed recently by Svinin (2022).
引用
收藏
页码:9348 / 9363
页数:16
相关论文
共 50 条
  • [1] Some Trigonometric Identities Involving Fibonacci and Lucas Numbers
    Bibak, Kh.
    Haghighi, M. H. Shirdareh
    [J]. JOURNAL OF INTEGER SEQUENCES, 2009, 12 (08)
  • [2] Three identities concerning Fibonacci and Lucas numbers
    Keskin, Refik
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (05) : 44 - 48
  • [3] SOME NEW IDENTITIES CONCERNING GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Siar, Zafer
    Keskin, Refik
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (03): : 211 - 222
  • [4] Identities for Fibonacci and Lucas numbers
    Grossman, George
    Zeleke, Aklilu
    Zhu, Xinyun
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (03) : 670 - 681
  • [5] FIBONACCI NUMBERS AND TRIGONOMETRIC IDENTITIES
    Garnier, N.
    Ramare, O.
    [J]. FIBONACCI QUARTERLY, 2008, 46-47 (01): : 56 - 61
  • [6] TRIGONOMETRIC EXPRESSIONS FOR FIBONACCI AND LUCAS NUMBERS
    Sury, B.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (02): : 199 - 208
  • [7] Identities on generalized Fibonacci and Lucas numbers
    Nagaraja, K. M.
    Dhanya, P.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (03) : 189 - 202
  • [8] New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers
    da Silva, Robson
    [J]. ARS COMBINATORIA, 2018, 137 : 103 - 111
  • [9] Fibonacci Numbers and Trigonometric Functions
    Cook, Charles K.
    [J]. FIBONACCI QUARTERLY, 2008, 46-47 (04): : 379 - 380
  • [10] Some identities involving the Fibonacci numbers and Lucas numbers
    Zhang, WP
    [J]. FIBONACCI QUARTERLY, 2004, 42 (02): : 149 - 154