Evaluation of architectural support for global address-based communication in large-scale parallel machines

被引:0
|
作者
Krishnamurthy, A [1 ]
Schauser, KE [1 ]
Scheiman, CJ [1 ]
Wang, RY [1 ]
Culler, DE [1 ]
Yelick, K [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,DEPT COMP SCI,SANTA BARBARA,CA 93106
关键词
D O I
10.1145/248209.237147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Large-scale parallel machines are incorporating increasingly sophisticated architectural support for user-level messaging and global memory access. We provide a systematic evaluation of a broad spectrum of current design alternatives based on our implementations of a global address language on the Thinking Machines CM-5, Intel Paragon, Meiko CS-2, Gray T3D, and Berkeley NOW. This evaluation includes a range of compilation strategies that make varying use of the network processor; each is optimized for the target architecture and the particular strategy. We analyze a family of interacting issues that determine the performance tradeoffs in each implementation, quantify the resulting latency, overhead, and bandwidth of the global access operations, and demonstrate the effects on application performance.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 50 条
  • [1] Architectural Support for Efficient Large-Scale Automata Processing
    Liu, Hongyuan
    Ibrahim, Mohamed
    Kayiran, Onur
    Pai, Sreepathi
    Jog, Adwait
    [J]. 2018 51ST ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2018, : 908 - 920
  • [2] Architectural support for system software on large-scale clusters
    Fernández, J
    Frachtenberg, E
    Petrini, F
    Davis, K
    Sancho, JC
    [J]. 2004 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, PROCEEDINGS, 2004, : 519 - 528
  • [3] A framework for parallel large-scale global optimization
    Evtushenko, Yuri
    Posypkin, Mikhail
    Sigal, Israel
    [J]. COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2009, 23 (3-4): : 211 - 215
  • [4] Large-scale robust transductive support vector machines
    Cevikalp, Hakan
    Franc, Vojtech
    [J]. NEUROCOMPUTING, 2017, 235 : 199 - 209
  • [5] Large-scale pinball twin support vector machines
    Tanveer, M.
    Tiwari, A.
    Choudhary, R.
    Ganaie, M. A.
    [J]. MACHINE LEARNING, 2022, 111 (10) : 3525 - 3548
  • [6] Large-scale pinball twin support vector machines
    M. Tanveer
    A. Tiwari
    R. Choudhary
    M. A. Ganaie
    [J]. Machine Learning, 2022, 111 : 3525 - 3548
  • [7] ANALYSIS OF THE MULTIGRID FMV CYCLE ON LARGE-SCALE PARALLEL MACHINES
    TUMINARO, RS
    WOMBLE, DE
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (05): : 1159 - 1173
  • [8] Efficient Group Communication for Large-Scale Parallel Clustering
    Pettinger, David
    Di Fatta, Giuseppe
    [J]. INTELLIGENT DISTRIBUTED COMPUTING VI, 2013, 446 : 155 - 164
  • [9] Incremental Parallel Support Vector Machines for Classifying Large-Scale Multi-class Image Datasets
    Thanh-Nghi Do
    Tran-Nguyen, Minh-Thu
    [J]. FUTURE DATA AND SECURITY ENGINEERING, FDSE 2016, 2016, 10018 : 20 - 39
  • [10] Overview of Optimization Algorithms for Large-scale Support Vector Machines
    Ju, Xuchan
    Yan, Zhenghao
    Wang, Tianhe
    [J]. 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 909 - 916