CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces

被引:56
|
作者
Kant, Piyush [1 ]
Laskar, Shahedul Haque [1 ]
Hazarika, Jupitara [1 ]
Mahamune, Rupesh [1 ]
机构
[1] Natl Inst Technol, Dept Elect & Instrumentat Engn, Silchar 788010, Assam, India
关键词
EEG signal processing; cwt filter-bank; deep learning; short-time Fourier transform; convolutional neural network; Transfer Learning; EEG SIGNALS; SPATIAL-PATTERNS; NEURAL-NETWORKS; FEATURES;
D O I
10.1016/j.jneumeth.2020.108886
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The processing of brain signals for Motor imagery (MI) classification to have better accuracy is a key issue in the Brain-Computer Interface (BCI). While conventional methods like Artificial neural network (ANN), Linear discernment analysis (LDA), K-Nearest Neighbor (KNN), Support vector machine (SVM), etc. have made significant progress in terms of classification accuracy, deep transfer learning-based systems have shown the potential to outperform them. BCI can play a vital role in enabling communication with the external world for persons with motor disabilities. New Methods: Deep learning has been a success in many fields. However, for Electroencephalogram (EEG) signals, relatively minimal work has been carried out using deep learning. This paper proposes a combination of Continuous Wavelet Transform (CWT) along with deep learning-based transfer learning to solve the problem. CWT transforms one dimensional EEG signals into two-dimensional time-frequency-amplitude representation enabling us to exploit available deep networks through transfer learning. Results: The effectiveness of the proposed approach is evaluated in this study using an openly available BCI competition data-set. The results of the approach have been compared to earlier works on the same dataset, and a promising validation accuracy of 95.71% is achieved in our investigation. Comparison with existing methods and Conclusion: Our approach has shown significant improvement over other studies, which is 5.71% improvement over earlier reported algorithm (Tabar and Halici, 2017) using the same dataset. Results show the validity of the proposed Deep Transfer-Learning based technique as a state of the art technique for MI classification in BCI.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A Systematic Review on Motor-Imagery Brain-Connectivity-Based Computer Interfaces
    Brusini, Lorenza
    Stival, Francesca
    Setti, Francesco
    Menegatti, Emanuele
    Menegaz, Gloria
    Storti, Silvia Francesca
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2021, 51 (06) : 725 - 733
  • [42] Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces
    Nicolas-Alonso, Luis F.
    Corralejo, Rebeca
    Gomez-Pilar, Javier
    Alvarez, Daniel
    Hornero, Roberto
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2015, 23 (04) : 702 - 712
  • [43] The Efficiency of the Brain-Computer Interfaces Based on Motor Imagery with Tactile and Visual Feedback
    Lukoyanov M.V.
    Gordleeva S.Y.
    Pimashkin A.S.
    Grigor’ev N.A.
    Savosenkov A.V.
    Motailo A.
    Kazantsev V.B.
    Kaplan A.Y.
    Human Physiology, 2018, 44 (3) : 280 - 288
  • [44] Feature Analysis of EEG Based Brain-Computer Interfaces to Detect Motor Imagery
    Akbar, Saima
    Martinez-Enriquez, A. M.
    Aslam, Muhammad
    Saleem, Rabeeya
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 509 - 518
  • [45] Motor Imagery EEG Signal Classification based on Deep Transfer Learning
    Wei, Mingnan
    Yang, Rui
    Huang, Mengjie
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 85 - 90
  • [46] Classification of motor imagery tasks for electrocorticogram based brain-computer interface
    Xu F.
    Zhou W.
    Zhen Y.
    Yuan Q.
    Zhou, W. (wdzhou@sdu.edu.cn), 1600, Springer Verlag (04): : 149 - 157
  • [47] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [48] A Novel Classification Method for Motor Imagery Based on Brain-Computer Interface
    Chen, Chih-Yu
    Wu, Chun-Wei
    Lin, Chin-Teng
    Chen, Shi-An
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4099 - 4102
  • [49] Crosstalk disrupts the production of motor imagery brain signals in brain–computer interfaces
    Phoebe S.-H. Neo
    Terence Mayne
    Xiping Fu
    Zhiyi Huang
    Elizabeth A. Franz
    Health Information Science and Systems, 9
  • [50] Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces
    Enzeng Dong
    Changhai Li
    Liting Li
    Shengzhi Du
    Abdelkader Nasreddine Belkacem
    Chao Chen
    Medical & Biological Engineering & Computing, 2017, 55 : 1809 - 1818