CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces

被引:56
|
作者
Kant, Piyush [1 ]
Laskar, Shahedul Haque [1 ]
Hazarika, Jupitara [1 ]
Mahamune, Rupesh [1 ]
机构
[1] Natl Inst Technol, Dept Elect & Instrumentat Engn, Silchar 788010, Assam, India
关键词
EEG signal processing; cwt filter-bank; deep learning; short-time Fourier transform; convolutional neural network; Transfer Learning; EEG SIGNALS; SPATIAL-PATTERNS; NEURAL-NETWORKS; FEATURES;
D O I
10.1016/j.jneumeth.2020.108886
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The processing of brain signals for Motor imagery (MI) classification to have better accuracy is a key issue in the Brain-Computer Interface (BCI). While conventional methods like Artificial neural network (ANN), Linear discernment analysis (LDA), K-Nearest Neighbor (KNN), Support vector machine (SVM), etc. have made significant progress in terms of classification accuracy, deep transfer learning-based systems have shown the potential to outperform them. BCI can play a vital role in enabling communication with the external world for persons with motor disabilities. New Methods: Deep learning has been a success in many fields. However, for Electroencephalogram (EEG) signals, relatively minimal work has been carried out using deep learning. This paper proposes a combination of Continuous Wavelet Transform (CWT) along with deep learning-based transfer learning to solve the problem. CWT transforms one dimensional EEG signals into two-dimensional time-frequency-amplitude representation enabling us to exploit available deep networks through transfer learning. Results: The effectiveness of the proposed approach is evaluated in this study using an openly available BCI competition data-set. The results of the approach have been compared to earlier works on the same dataset, and a promising validation accuracy of 95.71% is achieved in our investigation. Comparison with existing methods and Conclusion: Our approach has shown significant improvement over other studies, which is 5.71% improvement over earlier reported algorithm (Tabar and Halici, 2017) using the same dataset. Results show the validity of the proposed Deep Transfer-Learning based technique as a state of the art technique for MI classification in BCI.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Normalization of Feature Distribution in Motor Imagery Based Brain-Computer Interfaces
    Binias, Bartosz
    Grzejszczak, Tomasz
    Niezabitowski, Michal
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1337 - 1342
  • [22] Robustly Effective Approaches on Motor Imagery-Based Brain Computer Interfaces
    Moumgiakmas, Seraphim S.
    Papakostas, George A.
    COMPUTERS, 2022, 11 (05)
  • [23] An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces
    Papadopoulos, Sotirios
    Bonaiuto, James
    Mattout, Jeremie
    FRONTIERS IN NEUROSCIENCE, 2022, 15
  • [24] Relation Learning Using Temporal Episodes for Motor Imagery Brain-Computer Interfaces
    Huang, Xiuyu
    Liang, Shuang
    Zhang, Yuanpeng
    Zhou, Nan
    Pedrycz, Witold
    Choi, Kup-Sze
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 530 - 543
  • [25] Phase-based features for Motor Imagery Brain-Computer Interfaces
    Hamner, Benjamin
    Leeb, Robert
    Tavella, Michele
    Millan, Jose del R.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2578 - 2581
  • [26] A correntropy-based classifier for motor imagery brain-computer interfaces
    Suarez Uribe, Luisa Fernanda
    Stefano Filho, Carlos Alberto
    de Oliveira, Vinicius Alves
    da Silva Costa, Thiago Bulhoes
    Rodrigues, Paula Gabrielly
    Soriano, Diogo Coutinho
    Boccato, Levy
    Castellano, Gabriela
    Attux, Romis
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (06):
  • [27] Motor Imagery Classification for Brain Computer Interface Using Deep Metric Learning
    Alwasiti, Haider
    Yusoff, Mohd Zuki
    Raza, Kamran
    IEEE ACCESS, 2020, 8 : 109949 - 109963
  • [28] Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces
    Sun, Biao
    Wu, Zexu
    Hu, Yong
    Li, Ting
    NEURAL NETWORKS, 2022, 151 : 111 - 120
  • [29] Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits
    Maria Alonso-Valerdi, Luz
    Antonio Salido-Ruiz, Ricardo
    Ramirez-Mendoza, Ricardo A.
    NEUROPSYCHOLOGIA, 2015, 79 : 354 - 363
  • [30] Education 4.0: Teaching the Basis of Motor Imagery Classification Algorithms for Brain-Computer Interfaces
    Balderas, David
    Ponce, Pedro
    Lopez-Bernal, Diego
    Molina, Arturo
    FUTURE INTERNET, 2021, 13 (08):