Polynomial algorithms for nested univariate clustering

被引:3
|
作者
Hansen, P
Jaumard, B
Simeone, B
机构
[1] Ecole Polytech, GERAD, Montreal, PQ H3T 1V6, Canada
[2] Ecole Polytech, Ecole Hautes Etud Commerciales, Montreal, PQ H3T 1V6, Canada
[3] Univ La Sapienza, Dept Stat, Rome, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
clustering; clique; polynomial algorithm;
D O I
10.1016/S0012-365X(01)00135-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Clique partitioning in Euclidean space R-n consists in finding a partition of a given set of N points into M clusters in order to minimize the sum of within-cluster interpoint distances. For n = 1 clusters need not consist of consecutive points on a line but have a nestedness property. Exploiting this property, an O((NM2)-M-5) dynamic programming algorithm is proposed. A theta(N) algorithm is also given for the case M = 2. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 50 条
  • [31] Accelerated approximation of the complex roots and factors of a univariate polynomial
    Pan, Victor Y.
    Tsigaridas, Elias
    THEORETICAL COMPUTER SCIENCE, 2017, 681 : 138 - 145
  • [32] Parametric "non-nested" discriminants for multiplicities of univariate polynomials
    Hong, Hoon
    Yang, Jing
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (08) : 1911 - 1932
  • [33] Parametric “non-nested” discriminants for multiplicities of univariate polynomials
    Hoon Hong
    Jing Yang
    Science China(Mathematics), 2024, 67 (08) : 1911 - 1932
  • [34] Nested Taylor Decomposition of Univariate Functions under Fluctuationlessness Approximation
    Gurvit, Ercan
    Baykara, N. A.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 895 - 898
  • [35] Decomposing the Radicals of Polynomial Ideals by Rational Univariate Representations
    Xiao Shuijing
    Zeng Guangxing
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (06) : 2703 - 2724
  • [36] Decomposing the Radicals of Polynomial Ideals by Rational Univariate Representations
    XIAO Shuijing
    ZENG Guangxing
    Journal of Systems Science & Complexity, 2023, 36 (06) : 2703 - 2724
  • [37] SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying Subspace Clustering Algorithms
    Sznaier, Mario
    Camps, Octavia
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8033 - 8041
  • [38] General Univariate Estimation-of-Distribution Algorithms
    Doerr, Benjamin
    Dufay, Marc
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT II, 2022, 13399 : 470 - 484
  • [39] Cooperative Coevolution and Univariate Estimation of Distribution Algorithms
    Vo, Christopher
    Panait, Liviu
    Luke, Sean
    FOGA'09: PROCEEDINGS OF THE 10TH ACM SIGRVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2009, : 141 - 150
  • [40] UNIVARIATE GEOMETRIC LIPSCHITZ GLOBAL OPTIMIZATION ALGORITHMS
    Kvasov, Dmitri E.
    Sergeyev, Yaroslav D.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (01): : 69 - 90