General Univariate Estimation-of-Distribution Algorithms

被引:2
|
作者
Doerr, Benjamin [1 ]
Dufay, Marc [2 ]
机构
[1] Inst Polytech Paris, Ecole Polytech, CNRS, LIX, Palaiseau, France
[2] Inst Polytech Paris, Ecole Polytech, Palaiseau, France
关键词
Estimation of distribution algorithms; Genetic drift; Running time analysis; Theory; MARGINAL DISTRIBUTION ALGORITHM; OPTIMIZATION; SEARCH; TIME;
D O I
10.1007/978-3-031-14721-0_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a general formulation of a univariate estimation-of-distribution algorithm (EDA). It naturally incorporates the three classic univariate EDAs compact genetic algorithm, univariate marginal distribution algorithm and population-based incremental learning as well as the max-min ant system with iteration-best update. Our unified description of the existing algorithms allows a unified analysis of these; we demonstrate this by providing an analysis of genetic drift that immediately gives the existing results proven separately for the four algorithms named above. Our general model also includes EDAs that are more efficient than the existing ones and these may not be difficult to find as we demonstrate for the ONEMAX and LEADINGONES benchmarks.
引用
收藏
页码:470 / 484
页数:15
相关论文
共 50 条
  • [1] Unbiasedness of estimation-of-distribution algorithms
    Friedrich, Tobias
    Koetzing, Timo
    Krejca, Martin S.
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 785 : 46 - 59
  • [2] Theory of Estimation-of-Distribution Algorithms
    Witt, Carsten
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1197 - 1225
  • [3] Significance-Based Estimation-of-Distribution Algorithms
    Doerr, Benjamin
    Krejca, Martin S.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (06) : 1025 - 1034
  • [4] Significance-based Estimation-of-Distribution Algorithms
    Doerr, Benjamin
    Krejca, Martin S.
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1483 - 1490
  • [5] Estimation-of-distribution algorithms for multi-valued decision variables
    Ben Jedidia, Firas
    Doerr, Benjamin
    Krejca, Martin S.
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 1003
  • [6] Estimation-of-Distribution Algorithms for Multi-Valued Decision Variables
    Ben Jedidia, Firas
    Doerr, Benjamin
    Krejca, Martin S.
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 230 - 238
  • [7] Cooperative Coevolution and Univariate Estimation of Distribution Algorithms
    Vo, Christopher
    Panait, Liviu
    Luke, Sean
    [J]. FOGA'09: PROCEEDINGS OF THE 10TH ACM SIGRVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2009, : 141 - 150
  • [8] Bivariate estimation-of-distribution algorithms can find an exponential number of optima
    Doerr, Benjamin
    Krejca, Martin S.
    [J]. THEORETICAL COMPUTER SCIENCE, 2023, 971
  • [9] Bivariate Estimation-of-Distribution Algorithms Can Find an Exponential Number of Optima
    Doerr, Benjamin
    Krejca, Martin S.
    [J]. GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 796 - 804
  • [10] On the Choice of the Update Strength in Estimation-of-Distribution Algorithms and Ant Colony Optimization
    Sudholt, Dirk
    Witt, Carsten
    [J]. ALGORITHMICA, 2019, 81 (04) : 1450 - 1489