Isomorphism classes of association schemes induced by Hadamard matrices

被引:1
|
作者
Hirasaka, Mitsugu [1 ]
Kim, Kijung [1 ]
Yu, Hyonju [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Busan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1016/j.ejc.2015.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every Hadamard matrix H of order n > 1 induces a graph with 4n vertices, called the Hadamard graph Gamma(H) of H. Since Gamma(H) is a distance-regular graph with diameter 4, it induces a 4-class association scheme (Omega, S) of order 4n. In this article we show a way to construct fission schemes of (Omega, S) under certain conditions, and for such a fission scheme we estimate the number of isomorphism classes with the same intersection numbers as the fission scheme. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [31] Hadamard and conference matrices
    Arasu, KT
    Chen, YQ
    Pott, A
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (02) : 103 - 117
  • [32] SEARCH FOR HADAMARD MATRICES
    GOLOMB, SW
    BAUMERT, LD
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (01): : 12 - &
  • [33] HADAMARD MATRICES AND THEIR APPLICATIONS
    HEDAYAT, A
    WALLIS, WD
    ANNALS OF STATISTICS, 1978, 6 (06): : 1184 - 1238
  • [34] Spectra of Hadamard matrices
    Egan, Ronan
    Cathain, Padraig O.
    Swartz, Eric
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 501 - 512
  • [35] NON-SYMMETRIC ASSOCIATION SCHEMES OF SYMMETRIC MATRICES
    霍元极
    万哲先
    Acta Mathematicae Applicatae Sinica(English Series), 1993, (03) : 236 - 255
  • [36] EQUIVALENCE OF HADAMARD MATRICES
    WALLIS, WD
    WALLIS, J
    ISRAEL JOURNAL OF MATHEMATICS, 1969, 7 (02) : 122 - &
  • [37] Power Hadamard matrices
    Craigen, R.
    Woodford, R.
    DISCRETE MATHEMATICS, 2008, 308 (13) : 2868 - 2884
  • [38] ON HADAMARD PRODUCT OF MATRICES
    DJOKOVIC, DZ
    MATHEMATISCHE ZEITSCHRIFT, 1965, 86 (05) : 395 - &
  • [39] Hadamard and Conference Matrices
    K.T. Arasu
    Yu Qing Chen
    Alexander Pott
    Journal of Algebraic Combinatorics, 2001, 14 : 103 - 117
  • [40] Cocyclic Hadamard matrices and hadamard groups are equivalent
    Flannery, DL
    JOURNAL OF ALGEBRA, 1997, 192 (02) : 749 - 779