AN ERROR ANALYSIS OF GALERKIN PROJECTION METHODS FOR LINEAR SYSTEMS WITH TENSOR PRODUCT STRUCTURE

被引:9
|
作者
Beckermann, Bernhard [1 ]
Kressner, Daniel [2 ]
Tobler, Christine [2 ]
机构
[1] UST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France
[2] EPF Lausanne, MATHICSE, ANCHP, CH-1015 Lausanne, Switzerland
关键词
linear system; Kronecker product structure; Sylvester equation; tensor projection; Galerkin projection; rational Krylov subspaces; KRYLOV SUBSPACE METHODS; LYAPUNOV; APPROXIMATION; EQUATIONS;
D O I
10.1137/120900204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent results on the convergence of a Galerkin projection method for the Sylvester equation are extended to more general linear systems with tensor product structure. In the Hermitian positive definite case, explicit convergence bounds are derived for Galerkin projection based on tensor products of rational Krylov subspaces. The results can be used to optimize the choice of shifts for these methods. Numerical experiments demonstrate that the convergence rates predicted by our bounds appear to be sharp.
引用
收藏
页码:3307 / 3326
页数:20
相关论文
共 50 条
  • [31] Error analysis of efficient evaluation algorithms for tensor product surfaces
    Delgado, J.
    Pena, J. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (01) : 156 - 169
  • [32] Preconditioning projection methods for solving algebraic linear systems
    García-Palomares, UM
    NUMERICAL ALGORITHMS, 1999, 21 (1-4) : 157 - 164
  • [33] A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS
    Cockburn, Bernardo
    Gopalakrishnan, Jayadeep
    Sayas, Francisco-Javier
    MATHEMATICS OF COMPUTATION, 2010, 79 (271) : 1351 - 1367
  • [34] Sketch-and-project methods for tensor linear systems
    Tang, Ling
    Yu, Yajie
    Zhang, Yanjun
    Li, Hanyu
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (02)
  • [35] Stochastic iterative projection methods for large linear systems
    Sabelfeld, Karl
    Loshchina, Nadja
    MONTE CARLO METHODS AND APPLICATIONS, 2010, 16 (3-4): : 343 - 359
  • [36] Adaptively sketched Bregman projection methods for linear systems
    Yuan, Zi-Yang
    Zhang, Lu
    Wang, Hongxia
    Zhang, Hui
    INVERSE PROBLEMS, 2022, 38 (06)
  • [37] QUASI-PROJECTION ANALYSIS OF GALERKIN METHODS FOR PARABOLIC AND HYPERBOLIC EQUATIONS
    DOUGLAS, J
    DUPONT, T
    WHEELER, MF
    MATHEMATICS OF COMPUTATION, 1978, 32 (142) : 345 - 362
  • [38] UNIFORM STABILITY AND ERROR ANALYSIS FOR SOME DISCONTINUOUS GALERKIN METHODS
    Hong, Qingguo
    Xu, Jinchao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (02): : 283 - 310
  • [39] Preconditioning projection methods for solving algebraic linear systems
    Ubaldo M. García-Palomares
    Numerical Algorithms, 1999, 21 : 157 - 164
  • [40] Low rank tensor methods in Galerkin-based isogeometric analysis
    Mantzaflaris, Angelos
    Juettler, Bert
    Khoromskij, Boris N.
    Langer, Ulrich
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 1062 - 1085