AN ERROR ANALYSIS OF GALERKIN PROJECTION METHODS FOR LINEAR SYSTEMS WITH TENSOR PRODUCT STRUCTURE

被引:9
|
作者
Beckermann, Bernhard [1 ]
Kressner, Daniel [2 ]
Tobler, Christine [2 ]
机构
[1] UST Lille, UFR Math M3, Lab Painleve UMR ANO EDP 8524, F-59655 Villeneuve Dascq, France
[2] EPF Lausanne, MATHICSE, ANCHP, CH-1015 Lausanne, Switzerland
关键词
linear system; Kronecker product structure; Sylvester equation; tensor projection; Galerkin projection; rational Krylov subspaces; KRYLOV SUBSPACE METHODS; LYAPUNOV; APPROXIMATION; EQUATIONS;
D O I
10.1137/120900204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent results on the convergence of a Galerkin projection method for the Sylvester equation are extended to more general linear systems with tensor product structure. In the Hermitian positive definite case, explicit convergence bounds are derived for Galerkin projection based on tensor products of rational Krylov subspaces. The results can be used to optimize the choice of shifts for these methods. Numerical experiments demonstrate that the convergence rates predicted by our bounds appear to be sharp.
引用
收藏
页码:3307 / 3326
页数:20
相关论文
共 50 条
  • [21] PROJECTION METHODS FOR SOLVING SPARSE LINEAR SYSTEMS
    TEWARSON, RP
    COMPUTER JOURNAL, 1969, 12 (01): : 77 - &
  • [22] Krylov projection methods for linear Hamiltonian systems
    Li, Lu
    Celledoni, Elena
    NUMERICAL ALGORITHMS, 2019, 81 (04) : 1361 - 1378
  • [23] Krylov projection methods for linear Hamiltonian systems
    Lu Li
    Elena Celledoni
    Numerical Algorithms, 2019, 81 : 1361 - 1378
  • [24] A posteriori error estimates for local discontinuous Galerkin methods of linear elasticity
    Chen, Yun-Cheng
    Huang, Jian-Guo
    Xu, Yi-Feng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (12): : 1857 - 1862
  • [25] Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods
    Pazner, Will
    Persson, Per-Olof
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 354 : 344 - 369
  • [26] Fast Tensor Product Schwarz Smoothers for High-Order Discontinuous Galerkin Methods
    Witte, Julius
    Arndt, Daniel
    Kanschat, Guido
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (03) : 709 - 728
  • [27] Error analysis methods for the fixed-point implementation of linear systems
    Hilaire, Thibault
    Volkova, Anastasia
    2017 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2017,
  • [28] STABILITY ANALYSIS AND ERROR ESTIMATES OF LAX-WENDROFF DISCONTINUOUS GALERKIN METHODS FOR LINEAR CONSERVATION LAWS
    Sun, Zheng
    Shu, Chi-Wang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 1063 - 1087
  • [29] Intrusive Galerkin Projection for Model Order Reduction of Uncertain Linear Dynamic Systems
    Nechak, L.
    Raynaud, H-F.
    Kulcsar, C.
    IFAC PAPERSONLINE, 2017, 50 (01): : 2738 - 2743
  • [30] Error Estimates of Spectral Galerkin Methods for a Linear Fractional Reaction–Diffusion Equation
    Zhongqiang Zhang
    Journal of Scientific Computing, 2019, 78 : 1087 - 1110