Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces

被引:100
|
作者
Afanasenkau, Dzmitry [1 ]
Kalinina, Daria [2 ]
Lyakhovetskii, Vsevolod [3 ,4 ]
Tondera, Christoph [1 ]
Gorsky, Oleg [2 ,3 ,4 ]
Moosavi, Seyyed [1 ]
Pavlova, Natalia [2 ,3 ]
Merkulyeva, Natalia [2 ,3 ,4 ]
Kalueff, Allan V. [2 ,5 ]
Minev, Ivan R. [1 ,6 ]
Musienko, Pavel [2 ,3 ,4 ,7 ]
机构
[1] Tech Univ Dresden, Ctr Mol & Cellular Bioengn CMCB, Biotechnol Ctr BIOTEC, Dresden, Germany
[2] St Petersburg State Univ, Inst Translat Biomed, St Petersburg, Russia
[3] Russian Acad Sci, Pavlov Inst Physiol, St Petersburg, Russia
[4] Minist Healthcare Russian Federat, Granov Russian Res Ctr Radiol & Surg Technol, St Petersburg, Russia
[5] Ural Fed Univ, Ekaterinburg, Russia
[6] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[7] Minist Healthcare Russian Federat, St Petersburg State Res Inst Phthisiopulmonol, St Petersburg, Russia
基金
欧洲研究理事会; 俄罗斯基础研究基金会;
关键词
SPINAL-CORD; DURA-MATER; STIMULATION; DECEREBRATE; LOCOMOTION; MICROGLIA; BALANCE; BLADDER; SYSTEM; GAIT;
D O I
10.1038/s41551-020-00615-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Customized soft electrode arrays that are well adjusted to specific anatomical environments, functions and experimental models can be rapidly prototyped via the robotically controlled deposition of conductive inks and insulating inks. Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications.
引用
收藏
页码:1010 / 1022
页数:13
相关论文
共 50 条
  • [31] A rapid PCI NoC prototyping platform with VCI interfaces methodology
    Houzet, Dominique
    Ouadjaout, Salim
    Advances in Systems Engineering, Signal Processing and Communications, 2002, : 299 - 306
  • [32] Triple-network-based conductive polymer hydrogel for soft and elastic bioelectronic interfaces
    Chen, Yan
    Chen, Liangpeng
    Geng, Bowen
    Chen, Fan
    Yuan, Yuan
    Li, Deling
    Wang, Yi-Xuan
    Jia, Wang
    Hu, Wenping
    SMARTMAT, 2024, 5 (03):
  • [33] Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces
    Slipher, Geoffrey A.
    Hairston, W. David
    Bradford, J. Cortney
    Bain, Erich D.
    Mrozek, Randy A.
    PLOS ONE, 2018, 13 (02):
  • [34] A low-profile electromechanical packaging system for soft-to-flexible bioelectronic interfaces
    Fallegger, Florian
    Trouillet, Alix
    Coen, Florent-Valery
    Schiavone, Giuseppe
    Lacour, Stephanie P.
    APL BIOENGINEERING, 2023, 7 (03)
  • [35] Ultrathin, Transferred Layers of Metal Silicide as Faradaic Electrical Interfaces and Biofluid Barriers for Flexible Bioelectronic Implants
    Li, Jinghua
    Li, Rui
    Du, Haina
    Zhong, Yishan
    Chen, Yison
    Nan, Kewang
    Won, Sang Min
    Zhang, Jize
    Huang, Yonggang
    Rogers, John A.
    ACS NANO, 2019, 13 (01) : 660 - 670
  • [36] Critical analysis of rapid prototyping assisted investment casting for medical implants
    1600, The WFO (The World Foundry Organization Ltd)
  • [37] Rapid Prototyping of Ultralow-Cost, Inkjet-Printed Carbon Microelectrodes for Flexible Bioelectronic Devices
    Schnitker, Jan
    Adly, Nouran
    Seyock, Silke
    Bachmann, Bernd
    Yakushenko, Alexey
    Wolfrum, Bernhard
    Offenhaeusser, Andreas
    ADVANCED BIOSYSTEMS, 2018, 2 (03)
  • [38] BIOMATERIALS PROCESSING BY RP TECHNOLOGIES (RAPID PROTOTYPING) USED IN THE IMPLANTS MANUFACTURING
    Baila, Diana
    ANNALS OF DAAAM FOR 2012 & PROCEEDINGS OF THE 23RD INTERNATIONAL DAAAM SYMPOSIUM - INTELLIGENT MANUFACTURING AND AUTOMATION - FOCUS ON SUSTAINABILITY, 2012, 23 : 285 - 288
  • [39] Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography
    Love, JC
    Wolfe, DB
    Jacobs, HO
    Whitesides, GM
    LANGMUIR, 2001, 17 (19) : 6005 - 6012
  • [40] ARcadia: A Rapid Prototyping Platform for Real-time Tangible Interfaces
    Kelly, Annie
    de Halleux, Jonathan
    Shapiro, R. Benjamin
    Ball, Thomas
    PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), 2018,