Triple-network-based conductive polymer hydrogel for soft and elastic bioelectronic interfaces

被引:20
|
作者
Chen, Yan [1 ]
Chen, Liangpeng [2 ]
Geng, Bowen [1 ]
Chen, Fan [1 ]
Yuan, Yuan [1 ]
Li, Deling [2 ,3 ]
Wang, Yi-Xuan [1 ,4 ,5 ,6 ]
Jia, Wang [2 ,3 ,7 ]
Hu, Wenping [1 ,4 ,5 ,6 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Tianjin Key Lab Mol Optoelect Sci, Dept Chem,Sch Sci, Tianjin, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Tiantan Hosp, China Natl Clin Res Ctr Neurol Dis NCRC ND, Beijing, Peoples R China
[4] Tianjin Municipal Peoples Goverment, Haihe Lab Sustainable Chem Transformat, Tianjin, Peoples R China
[5] Tianjin Univ, Sch Sci, Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[6] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[7] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing 100070, Peoples R China
来源
SMARTMAT | 2024年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
conductive polymer hydrogel; neurostimulation; PEDOT; PSS; triple interpenetrating network; ultrasoft bioelectronics; PEDOTPSS; ADHESION;
D O I
10.1002/smm2.1229
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conductive polymer hydrogels have greatly improved the compatibility of electronic devices with biological tissues for human-machine interfacing. Hydrogels that possess low Young's modulus, low interfacial impedance, and high tensile properties facilitate high-quality signal transmission across dynamic biointerfaces. Direct incorporation of elastomers with conductive polymers may result in undesirable mechanical and/or electrical performance. Here, a covalent cross-linking network and an entanglement-driven network with conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) have been combined. The triple-network conductive hydrogel shows high stretchability (with fracture strain up to 900%), low impedance (down to 91.2 & omega; cm(2)), and reversible adhesion. Importantly, ultra-low modulus (down to 6.3 kPa) and strain-insensitive electrical/electrochemical performance were achieved, which provides a guarantee for low current stimulation. The material design will contribute to the progression of soft and conformal bioelectronic devices, and pave the way to future implantable electronics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hydrogel-based soft bioelectronic interfaces and their applications
    Jiao, Caicai
    Liu, Jiahui
    Yan, Shuo
    Xu, Zhiwei
    Hou, Zhaoru
    Xu, Wenlong
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (06) : 2620 - 2645
  • [2] Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces
    Slipher, Geoffrey A.
    Hairston, W. David
    Bradford, J. Cortney
    Bain, Erich D.
    Mrozek, Randy A.
    PLOS ONE, 2018, 13 (02):
  • [3] 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces
    Tao Zhou
    Hyunwoo Yuk
    Faqi Hu
    Jingjing Wu
    Fajuan Tian
    Heejung Roh
    Zequn Shen
    Guoying Gu
    Jingkun Xu
    Baoyang Lu
    Xuanhe Zhao
    Nature Materials, 2023, 22 : 895 - 902
  • [4] 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces
    Zhou, Tao
    Yuk, Hyunwoo
    Hu, Faqi
    Wu, Jingjing
    Tian, Fajuan
    Roh, Heejung
    Shen, Zequn
    Gu, Guoying
    Xu, Jingkun
    Lu, Baoyang
    Zhao, Xuanhe
    NATURE MATERIALS, 2023, 22 (07) : 895 - +
  • [5] Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics
    Zhou, Yang
    Wan, Changjin
    Yang, Yongsheng
    Yang, Hui
    Wang, Shancheng
    Dai, Zhendong
    Ji, Keju
    Jiang, Hui
    Chen, Xiaodong
    Long, Yi
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (01)
  • [6] Conductive and antibacterial dual-network hydrogel for soft bioelectronics
    Sun, Huiqi
    Wang, Sai
    Yang, Fan
    Tan, Mingyi
    Bai, Ling
    Wang, Peipei
    Feng, Yingying
    Liu, Wenbo
    Wang, Rongguo
    He, Xiaodong
    MATERIALS HORIZONS, 2023, 10 (12) : 5805 - 5821
  • [7] Building soft and conformal bioelectronic interfaces via a water-responsive supercontractile polymer film
    Ding, Yichun
    Wen, Zhenhai
    SCIENCE BULLETIN, 2024, 69 (09) : 1179 - 1181
  • [8] Mechanically-Compliant Bioelectronic Interfaces through Fatigue-Resistant Conducting Polymer Hydrogel Coating
    Xue, Yu
    Chen, Xingmei
    Wang, Fucheng
    Lin, Jingsen
    Liu, Ji
    ADVANCED MATERIALS, 2023, 35 (40)
  • [9] An extremely tough and ionic conductive natural-polymer-based double network hydrogel
    Sun, Xingyue
    Liang, Yongzhi
    Ye, Lina
    Liang, Haiyi
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (37) : 7751 - 7759
  • [10] Conductive-Hydrogel-Based Electrodes for Invasive Neural Interfaces
    D. A. Kirillova
    N. A. Sharikova
    A. O. Romanov
    R. G. Vasilov
    T. E. Grigoriev
    P. M. Gotovtsev
    Nanobiotechnology Reports, 2024, 19 (6) : 872 - 878