Triple-network-based conductive polymer hydrogel for soft and elastic bioelectronic interfaces

被引:20
|
作者
Chen, Yan [1 ]
Chen, Liangpeng [2 ]
Geng, Bowen [1 ]
Chen, Fan [1 ]
Yuan, Yuan [1 ]
Li, Deling [2 ,3 ]
Wang, Yi-Xuan [1 ,4 ,5 ,6 ]
Jia, Wang [2 ,3 ,7 ]
Hu, Wenping [1 ,4 ,5 ,6 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Tianjin Key Lab Mol Optoelect Sci, Dept Chem,Sch Sci, Tianjin, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Tiantan Hosp, China Natl Clin Res Ctr Neurol Dis NCRC ND, Beijing, Peoples R China
[4] Tianjin Municipal Peoples Goverment, Haihe Lab Sustainable Chem Transformat, Tianjin, Peoples R China
[5] Tianjin Univ, Sch Sci, Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[6] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[7] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing 100070, Peoples R China
来源
SMARTMAT | 2024年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
conductive polymer hydrogel; neurostimulation; PEDOT; PSS; triple interpenetrating network; ultrasoft bioelectronics; PEDOTPSS; ADHESION;
D O I
10.1002/smm2.1229
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conductive polymer hydrogels have greatly improved the compatibility of electronic devices with biological tissues for human-machine interfacing. Hydrogels that possess low Young's modulus, low interfacial impedance, and high tensile properties facilitate high-quality signal transmission across dynamic biointerfaces. Direct incorporation of elastomers with conductive polymers may result in undesirable mechanical and/or electrical performance. Here, a covalent cross-linking network and an entanglement-driven network with conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) have been combined. The triple-network conductive hydrogel shows high stretchability (with fracture strain up to 900%), low impedance (down to 91.2 & omega; cm(2)), and reversible adhesion. Importantly, ultra-low modulus (down to 6.3 kPa) and strain-insensitive electrical/electrochemical performance were achieved, which provides a guarantee for low current stimulation. The material design will contribute to the progression of soft and conformal bioelectronic devices, and pave the way to future implantable electronics.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Soft-hard interface design in super-elastic conductive polymer hydrogel containing Prussian blue analogues to enable highly efficient electrochemical deionization
    Ren, Yifan
    Yu, Fei
    Li, Xin-Gui
    Yuliarto, Brian
    Xu, Xingtao
    Yamauchi, Yusuke
    Ma, Jie
    MATERIALS HORIZONS, 2023, 10 (09) : 3548 - 3558
  • [22] High Ion-Conductive Hydrogel: Soft, Elastic, with Wide Humidity Tolerance and Long-Term Stability
    Lu, Yan-Na
    Mo, Kai
    Liang, Xue-Hang
    Xie, Jia-Sen
    Yang, Ying
    Zheng, Lin
    Gu, Mingwei
    Liu, Xiang-Ru
    Lu, Yunjie
    Ge, Jin
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (44) : 60992 - 61003
  • [23] Soft, Stretchable, and Conductive Hydrogel Based on Liquid Metal for Accurately Facial Expression Monitoring
    Qin, Haiyang
    Sun, Mengmeng
    Li, Peiyi
    Li, Junye
    Zhang, Zhilin
    Dai, Shuqi
    Huang, Mingjun
    Lu, Baoyang
    Pan, Xiaofang
    Wu, Lidong
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (17)
  • [24] In Vivo Chronic Brain Cortex Signal Recording Based on a Soft Conductive Hydrogel Biointerface
    Rinoldi, Chiara
    Ziai, Yasamin
    Zargarian, Seyed Shahrooz
    Nakielski, Pawel
    Zembrzycki, Krzysztof
    Bayan, Mohammad Ali Haghighat
    Zakrzewska, Anna Beata
    Fiorelli, Roberto
    Lanzi, Massimiliano
    Kostrzewska-Ksiezyk, Agnieszka
    Czajkowski, Rafal
    Kublik, Ewa
    Kaczmarek, Leszek
    Pierini, Filippo
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (05) : 6283 - 6296
  • [25] Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation
    Cheng, Xiao
    Zhang, Fan
    Dong, Wentao
    POLYMERS, 2022, 14 (19)
  • [26] Tailoring Stretchable, Biocompatible, and 3D Printable Properties of Carbon-Based Conductive Hydrogel for Bioelectronic Interface Applications
    Yao, Siqi
    Zhang, Chenrui
    Bai, Luge
    Wang, Sen
    Liu, Yingjie
    Li, Lei
    Li, Xiao
    He, Jiankang
    Wang, Ling
    Li, Dichen
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (12)
  • [27] Soft and thermally conductive gels by introducing free-movable polymer chains into network
    Wang, Weixuan
    Zhou, Wei
    Shi, Hengyi
    He, Dongyi
    Pang, Yunsong
    Zeng, Xiaoliang
    Li, Chuanchang
    POLYMER, 2023, 267
  • [28] SYNTHESIS OF A NOVEL HYDROGEL BASED ON A COORDINATE COVALENT POLYMER NETWORK
    PFENNIG, BW
    BOCARSLY, AB
    PRUDHOMME, RK
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (07) : 2661 - 2665
  • [29] Cellulose-Based Dual-Network Conductive Hydrogel with Exceptional Adhesion
    Shi, Haoran
    Huo, Huanxin
    Yang, Hongxing
    Li, Hongshan
    Shen, Jingjie
    Wan, Jianyong
    Du, Guanben
    Yang, Long
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (48)
  • [30] High Performance Double Conductive Network Hydrogel Based on Soaking Strategy for Supercapacitors
    Wang, Xiaoyu
    Wang, Xiangdong
    Pi, Menghan
    Ran, Rong
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2022, 307 (02)