WHITNEY NUMBER OF CLOSED REAL ALGEBRAIC AFFINE CURVE OF TYPE I

被引:1
|
作者
Viro, Oleg [1 ]
机构
[1] Uppsala Univ, Inst Matemat, S-75106 Uppsala, Sweden
关键词
Whitney number; real algebraic curve; curve of type I; complex orientation; blow up;
D O I
10.17323/1609-4514-2006-6-1-211-217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a closed real algebraic plane affine curve dividing its complexification and equipped with a complex orientation, the Whitney number is expressed in terms of behavior of its complexification at infinity.
引用
下载
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [21] Estimation of the Bezout number for piecewise algebraic curve
    Wang, RH
    Xu, ZQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (05): : 710 - 717
  • [22] Estimation of the Bezout number for piecewise algebraic curve
    王仁宏
    许志强
    Science China Mathematics, 2003, (05) : 710 - 717
  • [23] AVERAGE NUMBER OF MAXIMA OF A RANDOM ALGEBRAIC CURVE
    DAS, M
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 : 741 - &
  • [24] Estimation of the bezout number for piecewise algebraic curve
    Renhong Wang
    Zhiqiang Xu
    Science in China Series A: Mathematics, 2003, 46 : 710 - 717
  • [25] On the number of rational points of a plane algebraic curve
    Giulietti, M
    ARCHIV DER MATHEMATIK, 2004, 82 (03) : 214 - 221
  • [26] On the number of rational points of a plane algebraic curve
    M. Giulietti
    Archiv der Mathematik, 2004, 82 : 214 - 221
  • [27] Hartogs-type theorems in real algebraic geometry, I
    Bilski, Marcin
    Bochnak, Jacek
    Kucharz, Wojciech
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (790): : 197 - 221
  • [28] ORDER OF A FINITE GROUPE OF ONTO GEOMORPHISMS OF A SURFACE AND ON NUMBER OF REAL FORMS OF A COMPLEX ALGEBRAIC CURVE
    NATANZON, SM
    DOKLADY AKADEMII NAUK SSSR, 1978, 242 (04): : 765 - 768
  • [29] On Design and Implementation of a Generic Number Type for Real Algebraic Number Computations Based on Expression Dags
    Moerig, Marc
    Roessling, Ivo
    Schirra, Stefan
    MATHEMATICS IN COMPUTER SCIENCE, 2010, 4 (04) : 539 - 556
  • [30] Algebraic affine rotation surfaces of parabolic type
    Alcazar, Juan G.
    Goldman, Ron
    JOURNAL OF GEOMETRY, 2019, 110 (03)