GLOBAL SMALL SOLUTION TO THE 2D MHD SYSTEM WITH A VELOCITY DAMPING TERM

被引:90
|
作者
Wu, Jiahong [1 ]
Wu, Yifei [2 ,3 ]
Xu, Xiaojing [2 ,3 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
MHD equations; global existence; velocity damping; MAGNETO-HYDRODYNAMICS EQUATIONS; MAGNETOHYDRODYNAMIC EQUATIONS; WEAK SOLUTIONS; REGULARITY; DIFFUSION; CRITERION; DISSIPATION;
D O I
10.1137/140985445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the global well-posedness of the incompressible magnetohydrodynamic (MHD) system with a velocity damping term. We establish the global existence and uniqueness of smooth solutions when the initial data is close to an equilibrium state. In addition, explicit large-time decay rates for various Sobolev norms of the solutions are also given.
引用
收藏
页码:2630 / 2656
页数:27
相关论文
共 50 条
  • [41] Global regularity of 2D generalized MHD equations with magnetic diffusion
    Jiu, Quanse
    Zhao, Jiefen
    Zeitschrift fur Angewandte Mathematik und Physik, 2014, 66 (03): : 677 - 687
  • [42] Global Regularity of the 2D Density-Dependent MHD with Vacuum
    Yang Liu
    Acta Applicandae Mathematicae, 2021, 171
  • [43] Global regularity to the 2D heat-conducting MHD fluids
    Hong Ye
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [44] Global regularity of 2D generalized MHD equations with magnetic diffusion
    Quansen Jiu
    Jiefeng Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 677 - 687
  • [45] Global regularity of 2D generalized MHD equations with magnetic diffusion
    Jiu, Quansen
    Zhao, Jiefeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 677 - 687
  • [46] Global regularity for the 2D incompressible MHD-α system without full dissipation and magnetic diffusions
    Ma, Caochuan
    Alsaedi, Ahmed
    Hayat, Tasawar
    Zhou, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1035 - 1052
  • [47] The virtual element method for a 2D incompressible MHD system
    Naranjo-Alvarez, S.
    da Veiga, L. Beirao
    Bokil, V. A.
    Dassi, F.
    Gyrya, V.
    Manzini, G.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 211 : 301 - 328
  • [48] Global solution to the n-dimensional non-resistive MHD system with damping in magnetic field
    Zhai, Xiao-Ping
    Chen, Zhi-Min
    APPLIED MATHEMATICS LETTERS, 2018, 82 : 32 - 37
  • [49] The Euler-Poisson System in 2D: Global Stability of the Constant Equilibrium Solution
    Ionescu, Alexandru D.
    Pausader, Benoit
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (04) : 761 - 826
  • [50] Global well-posedness of strong solution to 2D MHD equations in critical Fourier-Herz spaces
    Min, Dezai
    Wu, Gang
    Yao, Zhuoya
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (01)