GLOBAL SMALL SOLUTION TO THE 2D MHD SYSTEM WITH A VELOCITY DAMPING TERM

被引:90
|
作者
Wu, Jiahong [1 ]
Wu, Yifei [2 ,3 ]
Xu, Xiaojing [2 ,3 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
MHD equations; global existence; velocity damping; MAGNETO-HYDRODYNAMICS EQUATIONS; MAGNETOHYDRODYNAMIC EQUATIONS; WEAK SOLUTIONS; REGULARITY; DIFFUSION; CRITERION; DISSIPATION;
D O I
10.1137/140985445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the global well-posedness of the incompressible magnetohydrodynamic (MHD) system with a velocity damping term. We establish the global existence and uniqueness of smooth solutions when the initial data is close to an equilibrium state. In addition, explicit large-time decay rates for various Sobolev norms of the solutions are also given.
引用
收藏
页码:2630 / 2656
页数:27
相关论文
共 50 条
  • [21] An MHD Stirrer 2D Velocity Profile Measurement Validation Through a Machine Vision System
    Flores-Fuentes, Wendy
    Valenzuela-Delgado, Monica
    Gonzalez-Navarro, Felix F.
    Caceres-Hernandez, Danilo
    Sergiyenko, Oleg
    Rodriguez-Quinonez, Julio C.
    Rivas-Lopez, Moises
    Bravo-Zanoguera, Miguel E.
    Hernandez-Balbuena, Daniel
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 5584 - 5589
  • [22] Hydrostatic approximation of the 2D MHD system in a thin strip with a small analytic data
    Aarach, Nacer
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (02)
  • [23] Global cauchy problem of 2D generalized MHD equations
    Fan, Jishan
    Malaikah, Honaida
    Monaquel, Satha
    Nakamura, Gen
    Zhou, Yong
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01): : 127 - 131
  • [24] Global regularity of 2D almost resistive MHD equations
    Yuan, Baoquan
    Zhao, Jiefeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 53 - 65
  • [25] Remarks on global regularity of 2D generalized MHD equations
    Yuan, Baoquan
    Bai, Linna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (02) : 633 - 640
  • [26] Global cauchy problem of 2D generalized MHD equations
    Jishan Fan
    Honaida Malaikah
    Satha Monaquel
    Gen Nakamura
    Yong Zhou
    Monatshefte für Mathematik, 2014, 175 : 127 - 131
  • [27] Global well-posedness for the 2D Boussinesq system with variable viscosity and damping
    Yu, Yanghai
    Wu, Xing
    Tang, Yanbin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 3044 - 3061
  • [28] A magnetic regularity criterion for the 2D MHD equations with velocity dissipation
    Yanghai Yu
    Xing Wu
    Yanbin Tang
    Boundary Value Problems, 2016
  • [29] A magnetic regularity criterion for the 2D MHD equations with velocity dissipation
    Yu, Yanghai
    Wu, Xing
    Tang, Yanbin
    BOUNDARY VALUE PROBLEMS, 2016,
  • [30] ON THE EXPONENTIAL STABILITY OF A STRATIFIED FLOW TO THE 2D IDEAL MHD EQUATIONS WITH DAMPING
    Du, Yi
    Yang, Wang
    Zhou, Yi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 5077 - 5102