Data-Driven Network Intelligence for Anomaly Detection

被引:31
|
作者
Xu, Shengjie [1 ]
Qian, Yi [1 ]
Hu, Rose Qingyang [2 ]
机构
[1] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Lincoln, NE 68503 USA
[2] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
来源
IEEE NETWORK | 2019年 / 33卷 / 03期
基金
美国国家科学基金会;
关键词
Artificial intelligence - Cybersecurity - Anomaly detection - Fog computing - Engines - Digital storage;
D O I
10.1109/MNET.2019.1800358
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven network intelligence will offer a robust, efficient, and effective computing system for anomaly detection in cyber security applications. In this article, we first summarize the current development and challenges of network intelligence for anomaly detection. Based on the current development, we propose a data-driven intelligence system for network anomaly detection. With the support of extended computing, storage, and other resources to the network edge, fog computing is incorporated into the design of the system. The proposed system consists of three major components: fog enabled infrastructure, fog enabled artificial intelligence (Al) engine, and threat intelligence. Fog enabled infrastructure provides efficient and effective computing resources for parallel computing and data storage. The fog enabled Al engine produces optimal learning models for threat detection, and enables efficient model update both locally and globally. Threat intelligence offers real-time network monitoring and cyber threat detection. We demonstrate that the proposed data-driven network intelligence system achieves high detection accuracy and provides efficient computational performance.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 50 条
  • [41] Towards a data-driven adaptive anomaly detection system for human activity
    Yahaya, Salisu Wada
    Lotfi, Ahmad
    Mahmud, Mufti
    [J]. PATTERN RECOGNITION LETTERS, 2021, 145 : 200 - 207
  • [42] Data-Driven Anomaly Detection in Laboratory Medicine: Past, Present, and Future
    Spies, Nicholas C.
    Farnsworth, Christopher W.
    Jackups, Ronald
    [J]. JOURNAL OF APPLIED LABORATORY MEDICINE, 2023, 8 (01): : 162 - 179
  • [43] Anomaly Detection in Data-Driven Coherency Identification Using Cumulant Tensor
    Sun, Bo
    Xu, Yijun
    Wang, Qinling
    Lu, Shuai
    Yu, Ruizhi
    Gu, Wei
    Mili, Lamine
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4767 - 4770
  • [44] Anomaly detection of the tapered roller bearings with statistical data-driven approaches
    Chen, S. L.
    Wang, L.
    Wood, R. J. K.
    Callan, R.
    Powrie, H. E. G.
    [J]. INSIGHT, 2010, 52 (08) : 428 - 436
  • [45] Improving Analog Functional Safety Using Data-Driven Anomaly Detection
    Su, Fei
    Goteti, Prashant
    [J]. 2018 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2018,
  • [46] A data-driven approach for multivariate contextualized anomaly detection: industry use
    Stojanovic, Nenad
    Dinic, Marko
    Stojanovic, Ljiljana
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1560 - 1569
  • [47] Data-driven Health Monitoring and Anomaly Detection in Aircraft Shock Absorbers
    Lopetegui, Jose Joaquin Mendoza
    Papa, Gianluca
    Tanelli, Mara
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 304 - 311
  • [48] Data-Driven Approach for Distribution Network Topology Detection
    Cavraro, G.
    Arghandeh, R.
    Poolla, K.
    von Meier, A.
    [J]. 2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [49] A Data-Driven Anomaly Detection Approach for Acquiring Baseline of Aircraft Engine Measurement Data
    Sun, Hao
    Guo, Ying-Qing
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7225 - 7229
  • [50] Fog Intelligence for Network Anomaly Detection
    Yang, Kai
    Ma, Hui
    Dou, Shaoyu
    [J]. IEEE NETWORK, 2020, 34 (02): : 78 - 82