Improving Analog Functional Safety Using Data-Driven Anomaly Detection

被引:0
|
作者
Su, Fei [1 ]
Goteti, Prashant [1 ]
机构
[1] Intel Corp, Santa Clara, CA 95051 USA
关键词
Functional Safety; Anomaly Detection; Data-Driven Method; Analog Automotive Circuits; Machine Learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Safety is a critical objective for automotive developments. Functional Safety of automotive analog and mixed-signal circuits faces several challenges; on the other hand, analog behavior provides an opportunity for early anomaly alert, thus improving functional safety. In this paper we propose a machine learning based methodology using data-driven anomaly detection for analog automotive circuits. The contribution of this work is to provide a framework of mining the dynamic in-field time series data in the context of system operation to detect anomalous events from analog functional safety perspective, with minimal hardware overhead. We present a realistic example to illustrate and analyze the proposed method. It presents an approach for improving functional safety of analog circuits in automotive applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Data-driven anomaly detection using OCSVM with Boundary optimzation
    Guo, Kai
    Liu, Datong
    Peng, Yu
    Peng, Xiyuan
    [J]. 2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 244 - 248
  • [2] Data-Driven Wireless Anomaly Detection Using Spectral Features
    Frisbie, Stephan
    Younis, Mohamed
    [J]. 2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [3] Data-Driven Anomaly Detection in Autonomous Platoon
    Ucar, Seyhan
    Ergen, Sinem Coleri
    Ozkasap, Oznur
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [4] Data-Driven Network Intelligence for Anomaly Detection
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    [J]. IEEE NETWORK, 2019, 33 (03): : 88 - 95
  • [5] Study on Optimization of Data-Driven Anomaly Detection
    Zhou, Yiqing
    Liao, Rui
    Chen, Yongjia
    [J]. 2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 123 - 127
  • [6] Anomaly Detection in Data-Driven Coherency Identification Using Cumulant Tensor
    Sun, Bo
    Xu, Yijun
    Wang, Qinling
    Lu, Shuai
    Yu, Ruizhi
    Gu, Wei
    Mili, Lamine
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4767 - 4770
  • [7] Online data-driven anomaly detection in autonomous robots
    Khalastchi, Eliahu
    Kalech, Meir
    Kaminka, Gal A.
    Lin, Raz
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (03) : 657 - 688
  • [8] Big data-driven anomaly detection in cellular networks
    Hussain, Bilal
    Du, Qinghe
    Ren, Pinyi
    [J]. 2017 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2017, : 678 - 683
  • [9] Data-Driven Network Analysis for Anomaly Traffic Detection
    Alam, Shumon
    Alam, Yasin
    Cui, Suxia
    Akujuobi, Cajetan
    [J]. SENSORS, 2023, 23 (19)
  • [10] Online data-driven anomaly detection in autonomous robots
    Eliahu Khalastchi
    Meir Kalech
    Gal A. Kaminka
    Raz Lin
    [J]. Knowledge and Information Systems, 2015, 43 : 657 - 688