Data-Driven Network Intelligence for Anomaly Detection

被引:31
|
作者
Xu, Shengjie [1 ]
Qian, Yi [1 ]
Hu, Rose Qingyang [2 ]
机构
[1] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Lincoln, NE 68503 USA
[2] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
来源
IEEE NETWORK | 2019年 / 33卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1109/MNET.2019.1800358
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven network intelligence will offer a robust, efficient, and effective computing system for anomaly detection in cyber security applications. In this article, we first summarize the current development and challenges of network intelligence for anomaly detection. Based on the current development, we propose a data-driven intelligence system for network anomaly detection. With the support of extended computing, storage, and other resources to the network edge, fog computing is incorporated into the design of the system. The proposed system consists of three major components: fog enabled infrastructure, fog enabled artificial intelligence (Al) engine, and threat intelligence. Fog enabled infrastructure provides efficient and effective computing resources for parallel computing and data storage. The fog enabled Al engine produces optimal learning models for threat detection, and enables efficient model update both locally and globally. Threat intelligence offers real-time network monitoring and cyber threat detection. We demonstrate that the proposed data-driven network intelligence system achieves high detection accuracy and provides efficient computational performance.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 50 条
  • [1] Data-Driven Edge Intelligence for Robust Network Anomaly Detection
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (03): : 1481 - 1492
  • [2] Data-Driven Network Analysis for Anomaly Traffic Detection
    Alam, Shumon
    Alam, Yasin
    Cui, Suxia
    Akujuobi, Cajetan
    [J]. SENSORS, 2023, 23 (19)
  • [3] Early anomaly detection and localisation in distribution network: a data-driven approach
    Shi, Xin
    Qiu, Robert
    He, Xing
    Ling, Zenan
    Yang, Haosen
    Chu, Lei
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (18) : 3814 - 3825
  • [4] Online Privacy-Preserving Data-Driven Network Anomaly Detection
    Kurt, Mehmet Necip
    Yilmaz, Yasin
    Wang, Xiaodong
    Mosterman, Pieter J.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (03) : 982 - 998
  • [5] Data-Driven Anomaly Detection in Autonomous Platoon
    Ucar, Seyhan
    Ergen, Sinem Coleri
    Ozkasap, Oznur
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [6] Study on Optimization of Data-Driven Anomaly Detection
    Zhou, Yiqing
    Liao, Rui
    Chen, Yongjia
    [J]. 2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 123 - 127
  • [7] Data-Driven Intrusion Detection for Ambient Intelligence
    Chatzigiannakis, Ioannis
    Maiano, Luca
    Trakadas, Panagiotis
    Anagnostopoulos, Aris
    Bacci, Federico
    Karkazis, Panagiotis
    Spirakis, Paul G.
    Zahariadis, Theodore
    [J]. AMBIENT INTELLIGENCE (AMI 2019), 2019, 11912 : 235 - 251
  • [8] Online data-driven anomaly detection in autonomous robots
    Khalastchi, Eliahu
    Kalech, Meir
    Kaminka, Gal A.
    Lin, Raz
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (03) : 657 - 688
  • [9] Big data-driven anomaly detection in cellular networks
    Hussain, Bilal
    Du, Qinghe
    Ren, Pinyi
    [J]. 2017 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2017, : 678 - 683
  • [10] Online data-driven anomaly detection in autonomous robots
    Eliahu Khalastchi
    Meir Kalech
    Gal A. Kaminka
    Raz Lin
    [J]. Knowledge and Information Systems, 2015, 43 : 657 - 688