Data-Driven Edge Intelligence for Robust Network Anomaly Detection

被引:25
|
作者
Xu, Shengjie [1 ]
Qian, Yi [1 ]
Hu, Rose Qingyang [2 ]
机构
[1] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Omaha, NE 68182 USA
[2] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84321 USA
基金
美国国家科学基金会;
关键词
Anomaly detection; Edge computing; Image edge detection; Cloud computing; Data models; Training; Protocols; Network Anomaly Detection; Edge Intelligence; Cyber Infrastructure; Cyber Security; SECURITY; INTERNET; THINGS;
D O I
10.1109/TNSE.2019.2936466
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The advancement of networking platforms for assured online services requires robust and effective network intelligence systems against anomalous events and malicious threats. With the rapid development of modern communication technologies, artificial intelligence, and the revolution of computing devices, cloud computing empowered network intelligence will inevitably become a core platform for various smart applications. While cloud computing provides strong and powerful computation, storage, and networking services to detect and defend cyber threats, edge computing on the other hand will deliver more benefits in specific yet potential critical areas. In this paper, we present a study on the data-driven edge intelligence for robust network anomaly detection. We first highlight the main motivations for edge intelligence, and then propose an intelligence system empowered by edge computing for network anomaly detection. We further propose a scheme on the data-driven robust network anomaly detection. In the proposed scheme, four phases are designed to incorporate with data-driven approaches to train a learning model which is able to detect and identify a network anomaly in a robust way. In the performance evaluations with data experiments, we demonstrate that the proposed scheme achieves the robustness of trained model and the efficiency on the detection of specific anomalies.
引用
收藏
页码:1481 / 1492
页数:12
相关论文
共 50 条
  • [1] Data-Driven Network Intelligence for Anomaly Detection
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    [J]. IEEE NETWORK, 2019, 33 (03): : 88 - 95
  • [2] Data-driven Distributionally Robust Optimization for Edge Intelligence
    Zhang, Zhaofeng
    Lin, Sen
    Dedeoglu, Mehmet
    Ding, Kemi
    Zhang, Junshan
    [J]. IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 2619 - 2628
  • [3] Data-Driven Network Analysis for Anomaly Traffic Detection
    Alam, Shumon
    Alam, Yasin
    Cui, Suxia
    Akujuobi, Cajetan
    [J]. SENSORS, 2023, 23 (19)
  • [4] Early anomaly detection and localisation in distribution network: a data-driven approach
    Shi, Xin
    Qiu, Robert
    He, Xing
    Ling, Zenan
    Yang, Haosen
    Chu, Lei
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (18) : 3814 - 3825
  • [5] Online Privacy-Preserving Data-Driven Network Anomaly Detection
    Kurt, Mehmet Necip
    Yilmaz, Yasin
    Wang, Xiaodong
    Mosterman, Pieter J.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (03) : 982 - 998
  • [6] Data-Driven Anomaly Detection in Autonomous Platoon
    Ucar, Seyhan
    Ergen, Sinem Coleri
    Ozkasap, Oznur
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [7] Study on Optimization of Data-Driven Anomaly Detection
    Zhou, Yiqing
    Liao, Rui
    Chen, Yongjia
    [J]. 2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 123 - 127
  • [8] Data-Driven Intrusion Detection for Ambient Intelligence
    Chatzigiannakis, Ioannis
    Maiano, Luca
    Trakadas, Panagiotis
    Anagnostopoulos, Aris
    Bacci, Federico
    Karkazis, Panagiotis
    Spirakis, Paul G.
    Zahariadis, Theodore
    [J]. AMBIENT INTELLIGENCE (AMI 2019), 2019, 11912 : 235 - 251
  • [9] Mobile Edge Computing-Based Data-Driven Deep Learning Framework for Anomaly Detection
    Hussain, Bilal
    Du, Qinghe
    Zhang, Sinai
    Imran, Ali
    Imran, Muhammad Ali
    [J]. IEEE ACCESS, 2019, 7 : 137656 - 137667
  • [10] Online data-driven anomaly detection in autonomous robots
    Khalastchi, Eliahu
    Kalech, Meir
    Kaminka, Gal A.
    Lin, Raz
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (03) : 657 - 688