Improving Analog Functional Safety Using Data-Driven Anomaly Detection

被引:0
|
作者
Su, Fei [1 ]
Goteti, Prashant [1 ]
机构
[1] Intel Corp, Santa Clara, CA 95051 USA
关键词
Functional Safety; Anomaly Detection; Data-Driven Method; Analog Automotive Circuits; Machine Learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Safety is a critical objective for automotive developments. Functional Safety of automotive analog and mixed-signal circuits faces several challenges; on the other hand, analog behavior provides an opportunity for early anomaly alert, thus improving functional safety. In this paper we propose a machine learning based methodology using data-driven anomaly detection for analog automotive circuits. The contribution of this work is to provide a framework of mining the dynamic in-field time series data in the context of system operation to detect anomalous events from analog functional safety perspective, with minimal hardware overhead. We present a realistic example to illustrate and analyze the proposed method. It presents an approach for improving functional safety of analog circuits in automotive applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Data-Driven Anomaly Detection in Laboratory Medicine: Past, Present, and Future
    Spies, Nicholas C.
    Farnsworth, Christopher W.
    Jackups, Ronald
    [J]. JOURNAL OF APPLIED LABORATORY MEDICINE, 2023, 8 (01): : 162 - 179
  • [42] Anomaly detection of the tapered roller bearings with statistical data-driven approaches
    Chen, S. L.
    Wang, L.
    Wood, R. J. K.
    Callan, R.
    Powrie, H. E. G.
    [J]. INSIGHT, 2010, 52 (08) : 428 - 436
  • [43] Online Privacy-Preserving Data-Driven Network Anomaly Detection
    Kurt, Mehmet Necip
    Yilmaz, Yasin
    Wang, Xiaodong
    Mosterman, Pieter J.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (03) : 982 - 998
  • [44] A data-driven approach for multivariate contextualized anomaly detection: industry use
    Stojanovic, Nenad
    Dinic, Marko
    Stojanovic, Ljiljana
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1560 - 1569
  • [45] A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things
    Xu, Hao
    Sun, Zihan
    Cao, Yuan
    Bilal, Hazrat
    [J]. SOFT COMPUTING, 2023, 27 (19) : 14469 - 14481
  • [46] Data-driven Health Monitoring and Anomaly Detection in Aircraft Shock Absorbers
    Lopetegui, Jose Joaquin Mendoza
    Papa, Gianluca
    Tanelli, Mara
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 304 - 311
  • [47] Data-Driven Model for Improving MEG Epileptic Spike Detection
    Dev, Antora
    Fouda, Mostafa M.
    Fadlullah, Zubair Md
    [J]. 2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [48] Data-driven Semi-supervised Anomaly Detection using Real-World Call Data Record
    Jaffry, Shan
    Shah, Syed Tariq
    Hasan, Syed Faraz
    [J]. 2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2020,
  • [49] A Data-Driven Anomaly Detection Approach for Acquiring Baseline of Aircraft Engine Measurement Data
    Sun, Hao
    Guo, Ying-Qing
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7225 - 7229
  • [50] Data-Driven Interpolation of Sea Level Anomalies Using Analog Data Assimilation
    Lguensat, Redouane
    Phi Huynh Viet
    Sun, Miao
    Chen, Ge
    Tian Fenglin
    Chapron, Bertrand
    Fablet, Ronan
    [J]. REMOTE SENSING, 2019, 11 (07)