Colloquium: Machine learning in nuclear physics

被引:84
|
作者
Boehnlein, Amber [1 ]
Diefenthaler, Markus [1 ]
Sato, Nobuo [1 ]
Schram, Malachi [1 ]
Ziegler, Veronique [1 ]
Fanelli, Cristiano [2 ,3 ]
Hjorth-Jensen, Morten [4 ,5 ,6 ]
Horn, Tanja [7 ,8 ]
Kuchera, Michelle P. [9 ,10 ]
Lee, Dean [4 ]
Nazarewicz, Witold [4 ]
Ostroumov, Peter [4 ]
Orginos, Kostas [1 ]
Poon, Alan [11 ]
Wang, Xin-Nian [11 ]
Scheinker, Alexander [12 ]
Smith, Michael S. [13 ]
Pang, Long-Gang [14 ]
机构
[1] Thomas Jefferson Natl Accelerator Fac, 12000 Jefferson Ave, Newport News, VA 23606 USA
[2] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
[3] MIT, Inst Artificial Intelligence & Fundamental Interac, Cambridge, MA 02139 USA
[4] Michigan State Univ, Fac Rare Isotope Beams, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[6] Univ Oslo, Ctr Comp Sci Educ, Dept Phys, N-0316 Oslo, Norway
[7] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[8] Thomas Jefferson Natl Accelerator Fac, 12000 Jefferson Ave, Newport News, VA 23606 USA
[9] Davidson Coll, Dept Phys, Davidson, NC 28035 USA
[10] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
[11] Lawrence Berkeley Natl Lab, Nucl Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[12] Accelerator Operat & Technol Div Appl Electrodynam, Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[13] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA
[14] Cent China Normal Univ, Inst Particle Phys, Key Lab Quark & Lepton Phys, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
COVARIATE SHIFT; NEURAL-NETWORKS; CLASSIFICATION; IDENTIFICATION; PREDICTION; MODEL;
D O I
10.1103/RevModPhys.94.031003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Advances in machine learning methods provide tools that have broad applicability in scientific research. These techniques are being applied across the diversity of nuclear physics research topics, leading to advances that will facilitate scientific discoveries and societal applications. This Colloquium provides a snapshot of nuclear physics research, which has been transformed by machine learning techniques.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Physics informed machine learning for chemistry tabulation
    Salunkhe, Amol
    Deighan, Dwyer
    DesJardin, Paul E.
    Chandola, Varun
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 69
  • [42] Machine Learning and Physics: A Survey of Integrated Models
    Seyyedi, Azra
    Bohlouli, Mahdi
    Oskoee, Seyedehsan Nedaaee
    ACM COMPUTING SURVEYS, 2024, 56 (05)
  • [43] Learning new physics from an imperfect machine
    D'Agnolo, Raffaele Tito
    Grosso, Gaia
    Pierini, Maurizio
    Wulzer, Andrea
    Zanetti, Marco
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (03):
  • [44] Quantum machine learning in high energy physics
    Guan, Wen
    Perdue, Gabriel
    Pesah, Arthur
    Schuld, Maria
    Terashi, Koji
    Vallecorsa, Sofia
    Vlimant, Jean-Roch
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [45] Preface to the special topic: Machine learning and physics
    Deng Dong-Ling
    ACTA PHYSICA SINICA, 2021, 70 (14)
  • [46] Physics-Constrained Machine Learning of Evapotranspiration
    Zhao, Wen Li
    Gentine, Pierre
    Reichstein, Markus
    Zhang, Yao
    Zhou, Sha
    Wen, Yeqiang
    Lin, Changjie
    Li, Xi
    Qiu, Guo Yu
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (24) : 14496 - 14507
  • [47] Machine and deep learning applications in particle physics
    Bourilkov, Dimitri
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (35):
  • [48] Optimizing the synergy between physics and machine learning
    Nature Machine Intelligence, 2021, 3 : 925 - 925
  • [49] Machine learning for anomaly detection in particle physics
    Belis V.
    Odagiu P.
    Aarrestad T.K.
    Reviews in Physics, 2024, 12