Colloquium: Machine learning in nuclear physics

被引:84
|
作者
Boehnlein, Amber [1 ]
Diefenthaler, Markus [1 ]
Sato, Nobuo [1 ]
Schram, Malachi [1 ]
Ziegler, Veronique [1 ]
Fanelli, Cristiano [2 ,3 ]
Hjorth-Jensen, Morten [4 ,5 ,6 ]
Horn, Tanja [7 ,8 ]
Kuchera, Michelle P. [9 ,10 ]
Lee, Dean [4 ]
Nazarewicz, Witold [4 ]
Ostroumov, Peter [4 ]
Orginos, Kostas [1 ]
Poon, Alan [11 ]
Wang, Xin-Nian [11 ]
Scheinker, Alexander [12 ]
Smith, Michael S. [13 ]
Pang, Long-Gang [14 ]
机构
[1] Thomas Jefferson Natl Accelerator Fac, 12000 Jefferson Ave, Newport News, VA 23606 USA
[2] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
[3] MIT, Inst Artificial Intelligence & Fundamental Interac, Cambridge, MA 02139 USA
[4] Michigan State Univ, Fac Rare Isotope Beams, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[6] Univ Oslo, Ctr Comp Sci Educ, Dept Phys, N-0316 Oslo, Norway
[7] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[8] Thomas Jefferson Natl Accelerator Fac, 12000 Jefferson Ave, Newport News, VA 23606 USA
[9] Davidson Coll, Dept Phys, Davidson, NC 28035 USA
[10] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
[11] Lawrence Berkeley Natl Lab, Nucl Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[12] Accelerator Operat & Technol Div Appl Electrodynam, Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[13] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA
[14] Cent China Normal Univ, Inst Particle Phys, Key Lab Quark & Lepton Phys, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
COVARIATE SHIFT; NEURAL-NETWORKS; CLASSIFICATION; IDENTIFICATION; PREDICTION; MODEL;
D O I
10.1103/RevModPhys.94.031003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Advances in machine learning methods provide tools that have broad applicability in scientific research. These techniques are being applied across the diversity of nuclear physics research topics, leading to advances that will facilitate scientific discoveries and societal applications. This Colloquium provides a snapshot of nuclear physics research, which has been transformed by machine learning techniques.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Learning new physics from a machine
    D'Agnolo, Raffaele Tito
    Wulzer, Andrea
    PHYSICAL REVIEW D, 2019, 99 (01)
  • [32] Machine learning in experimental neutrino physics
    Poonthottathil, N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024, : 2687 - 2698
  • [33] Quantum machine learning for chemistry and physics
    Sajjan, Manas
    Li, Junxu
    Selvarajan, Raja
    Sureshbabu, Shree Hari
    Kale, Sumit Suresh
    Gupta, Rishabh
    Singh, Vinit
    Kais, Sabre
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (15) : 6475 - 6573
  • [34] The application of machine learning in solar physics
    Liu Hui
    Ji KaiFan
    Jin ZhenYu
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2019, 49 (10)
  • [35] Machine learning the nuclear mass
    Gao, Ze-Peng
    Wang, Yong-Jia
    Lu, Hong-Liang
    Li, Qing-Feng
    Shen, Cai-Wan
    Liu, Ling
    NUCLEAR SCIENCE AND TECHNIQUES, 2021, 32 (10)
  • [36] Machine learning the nuclear mass
    Ze-Peng Gao
    Yong-Jia Wang
    Hong-Liang Lü
    Qing-Feng Li
    Cai-Wan Shen
    Ling Liu
    Nuclear Science and Techniques, 2021, 32 (10) : 73 - 85
  • [37] Machine learning the nuclear mass
    Ze-Peng Gao
    Yong-Jia Wang
    Hong-Liang Lü
    Qing-Feng Li
    Cai-Wan Shen
    Ling Liu
    Nuclear Science and Techniques, 2021, 32
  • [38] Machine learning for physics simulation anomaly detection
    Good, Adam
    Pritchard, Howard
    Moore, Lissa
    Kenyon, Garrett
    APPLICATIONS OF MACHINE LEARNING 2021, 2021, 11843
  • [39] Machine learning renormalization group for statistical physics
    Hou, Wanda
    You, Yi-Zhuang
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [40] Machine learning in the search for new fundamental physics
    Karagiorgi, Georgia
    Kasieczka, Gregor
    Kravitz, Scott
    Nachman, Benjamin
    Shih, David
    NATURE REVIEWS PHYSICS, 2022, 4 (06) : 399 - 412