Comparing and Clustering Flow Cytometry Data

被引:2
|
作者
Liu, Lin [1 ]
Xiong, Li [1 ]
Lu, James J. [1 ]
Gernert, Kim M. [2 ]
Hertzberg, Vicki [3 ]
机构
[1] Emory Univ, Dept Math CS, Atlanta, GA 30322 USA
[2] Emory Univ, BimCore, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Biostat, Atlanta, GA 30322 USA
关键词
D O I
10.1109/BIBM.2008.61
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flow cytometry technique produces large, multidimensional datasets of properties of individual cells that are helpful for biomedical science and clinical research. This paper explores an approach for comparing and clustering flow cytometry data. To overcome challenges posed by the irregularities and the high dimensions of the data, we develop a set of data preprocessing techniques to facilitate effective clustering of flow cytometry data files. We present a set of experiments using real data from the Protective Immunity Project (PIP) showing the effectiveness of the approach.
引用
收藏
页码:305 / +
页数:2
相关论文
共 50 条
  • [1] Automated clustering of heterotrophic bacterioplankton in flow cytometry data
    Garcia, Francisca C.
    Lopez-Urrutia, Angel
    Moran, Xose Anxelu G.
    [J]. AQUATIC MICROBIAL ECOLOGY, 2014, 72 (02) : 175 - 185
  • [2] The Challange of Clustering Flow Cytometry Data from Phytoplankton in Lakes
    Gluege, Stefan
    Pomati, Francesco
    Albert, Carlo
    Kauf, Peter
    Ott, Thomas
    [J]. NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS, 2014, 438 : 379 - 386
  • [3] Data reduction for spectral clustering to analyze high throughput flow cytometry data
    Zare, Habil
    Shooshtari, Parisa
    Gupta, Arvind
    Brinkman, Ryan R.
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [4] Data reduction for spectral clustering to analyze high throughput flow cytometry data
    Habil Zare
    Parisa Shooshtari
    Arvind Gupta
    Ryan R Brinkman
    [J]. BMC Bioinformatics, 11
  • [5] Hierarchical Clustering of Flow Cytometry Data for the Study of Conventional Central Chondrosarcoma
    Diaz-Romero, Jose
    Romeo, Salvatore
    Bovee, Judith V. M. G.
    Hogendoorn, Pancras C. W.
    Heini, Paul F.
    Mainil-Varlet, Pierre
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 2010, 225 (02) : 601 - 611
  • [6] Ultrafast clustering of single-cell flow cytometry data using FlowGrid
    Ye, Xiaoxin
    Ho, Joshua W. K.
    [J]. BMC SYSTEMS BIOLOGY, 2019, 13
  • [7] Model-based clustering for flow and mass cytometry data with clinical information
    Ko Abe
    Kodai Minoura
    Yuka Maeda
    Hiroyoshi Nishikawa
    Teppei Shimamura
    [J]. BMC Bioinformatics, 21
  • [8] Model-based clustering for flow and mass cytometry data with clinical information
    Abe, Ko
    Minoura, Kodai
    Maeda, Yuka
    Nishikawa, Hiroyoshi
    Shimamura, Teppei
    [J]. BMC BIOINFORMATICS, 2020, 21 (Suppl 13)
  • [9] Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data
    Wilkins, MF
    Hardy, SA
    Boddy, L
    Morris, CW
    [J]. CYTOMETRY, 2001, 44 (03): : 210 - 217
  • [10] On Extensions of k-Means Clustering for Automated Gating of Flow Cytometry Data
    Luta, George
    [J]. CYTOMETRY PART A, 2011, 79A (01) : 3 - 5