Comparing and Clustering Flow Cytometry Data

被引:2
|
作者
Liu, Lin [1 ]
Xiong, Li [1 ]
Lu, James J. [1 ]
Gernert, Kim M. [2 ]
Hertzberg, Vicki [3 ]
机构
[1] Emory Univ, Dept Math CS, Atlanta, GA 30322 USA
[2] Emory Univ, BimCore, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Biostat, Atlanta, GA 30322 USA
关键词
D O I
10.1109/BIBM.2008.61
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flow cytometry technique produces large, multidimensional datasets of properties of individual cells that are helpful for biomedical science and clinical research. This paper explores an approach for comparing and clustering flow cytometry data. To overcome challenges posed by the irregularities and the high dimensions of the data, we develop a set of data preprocessing techniques to facilitate effective clustering of flow cytometry data files. We present a set of experiments using real data from the Protective Immunity Project (PIP) showing the effectiveness of the approach.
引用
收藏
页码:305 / +
页数:2
相关论文
共 50 条
  • [41] Comparing Clustering Techniques for Real Microarray Data
    Gazi, Vilda Purutcuoglu
    Kayis, Elif
    [J]. 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2012, : 788 - 791
  • [42] Comparing Clustering Algorithms On Wisconsin Data Set
    Erken, Mucahit
    [J]. 2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1541 - 1544
  • [43] flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding
    Ge, Yongchao
    Sealfon, Stuart C.
    [J]. BIOINFORMATICS, 2012, 28 (15) : 2052 - 2058
  • [44] Single and multi-subject clustering of flow cytometry data for cell-type identification and anomaly detection
    Maziyar Baran Pouyan
    Vasu Jindal
    Javad Birjandtalab
    Mehrdad Nourani
    [J]. BMC Medical Genomics, 9
  • [45] The automated subset assignment pipeline (ASAP) for data-driven clustering and automated analysis of flow cytometry immunophenotyping
    Solman, Isabelle
    Mongan, Ann
    Blum, Lisa
    [J]. JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7
  • [46] Single and multi-subject clustering of flow cytometry data for cell-type identification and anomaly detection
    Pouyan, Maziyar Baran
    Jindal, Vasu
    Birjandtalab, Javad
    Nourani, Mehrdad
    [J]. BMC MEDICAL GENOMICS, 2016, 9
  • [47] A comparison framework and guideline of clustering methods for mass cytometry data
    Liu, Xiao
    Song, Weichen
    Wong, Brandon Y.
    Zhang, Ting
    Yu, Shunying
    Lin, Guan Ning
    Ding, Xianting
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [48] A comparison framework and guideline of clustering methods for mass cytometry data
    Xiao Liu
    Weichen Song
    Brandon Y. Wong
    Ting Zhang
    Shunying Yu
    Guan Ning Lin
    Xianting Ding
    [J]. Genome Biology, 20
  • [49] Improving the quality of clinical flow cytometry data
    Stewart, CC
    Dell, MB
    Cinquino, A
    Sheedy, D
    [J]. CYTOMETRY, 2002, : 42 - 42
  • [50] Toward exhaustive gating of flow cytometry data
    Qiu, Peng
    [J]. 2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 183 - 186