A locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes
被引:13
|
作者:
Ye, Xiu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Ye, Xiu
[1
]
Zhang, Shangyou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delaware, Dept Math Sci, Newark, DE 19716 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Zhang, Shangyou
[2
]
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Zhang, Zhimin
[3
,4
]
机构:
[1] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
Weak Galerkin;
Finite element methods;
Discrete gradient;
The Reissner-Mindlin plate;
Polygonal meshes;
DISCONTINUOUS GALERKIN;
APPROXIMATION;
CONVERGENCE;
D O I:
10.1016/j.camwa.2020.05.015
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A new weak Galerkin finite element method is introduced and analyzed for the Reissner-Mindlin plate model in the primary form (without introducing shear strain as an extra unknown), which results in a linear system with symmetric positive definite stiffness matrix. The proposed method achieves uniform convergence with respect to plate thickness (the so-called locking-free) without introducing any projection, reduced integration, etc. In addition, the new method can be applied to general polygonal meshes; in particular, we implement pentagonal and hexagonal meshes in our numerical tests. The numerical study confirms our theory. (C) 2020 Elsevier Ltd. All rights reserved.
机构:
Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Nanjing Normal Univ, Taizhou Coll, Taizhou 225300, Peoples R ChinaGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Wang, Chunmei
Wang, Junping
论文数: 0引用数: 0
h-index: 0
机构:
Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USAGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Wang, Junping
Wang, Ruishu
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun, Peoples R ChinaGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Wang, Ruishu
Zhang, Ran
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun, Peoples R ChinaGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA