A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation
被引:63
|
作者:
Wang, Chunmei
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Nanjing Normal Univ, Taizhou Coll, Taizhou 225300, Peoples R ChinaGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Wang, Chunmei
[1
,2
]
Wang, Junping
论文数: 0引用数: 0
h-index: 0
机构:
Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USAGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Wang, Junping
[3
]
Wang, Ruishu
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun, Peoples R ChinaGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Wang, Ruishu
[4
]
Zhang, Ran
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun, Peoples R ChinaGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Zhang, Ran
[4
]
机构:
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Nanjing Normal Univ, Taizhou Coll, Taizhou 225300, Peoples R China
[3] Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA
[4] Jilin Univ, Dept Math, Changchun, Peoples R China
Weak Galerkin;
Finite element methods;
Weak divergence;
Weak gradient;
Linear elasticity;
Polyhedral meshes;
BIHARMONIC EQUATION;
LINEAR ELASTICITY;
D O I:
10.1016/j.cam.2015.12.015
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper presents an arbitrary order locking-free numerical scheme for linear elasticity on general polygonal/polyhedral partitions by using weak Galerkin (WG) finite element methods. Like other WG methods, the key idea for the linear elasticity is to introduce discrete weak strain and stress tensors which are defined and computed by solving inexpensive local problems on each element. Such local problems are derived from weak formulations of the corresponding differential operators through integration by parts. Locking-free error estimates of optimal order are derived in a discrete H-1-norm and the usual L-2-norm for the approximate displacement when the exact solution is smooth. Numerical results are presented to demonstrate the efficiency, accuracy, and the locking free property of the weak Galerkin finite element method. Published by Elsevier B.V.
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Huo, Fuchang
Wang, Ruishu
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Wang, Ruishu
Wang, Yanqiu
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Wang, Yanqiu
Zhang, Ran
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Ye, Xiu
Zhang, Shangyou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delaware, Dept Math Sci, Newark, DE 19716 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Zhang, Shangyou
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
机构:
School of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong UniversitySchool of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong University