A locking-free weak Galerkin finite element method for linear elasticity problems

被引:0
|
作者
Huo, Fuchang [1 ]
Wang, Ruishu [1 ]
Wang, Yanqiu [2 ,3 ]
Zhang, Ran [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Weak Galerkin finite element methods; Weak derivative; Linear elasticity problems; H{div)-conforming reconstruction; Locking-free; DISCRETE MAXIMUM PRINCIPLE; PRESSURE-ROBUST; EQUATIONS; SCHEME;
D O I
10.1016/j.camwa.2024.02.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze a lowest-order locking-free weak Galerkin (WG) finite element scheme for the grad-div formulation of linear elasticity problems. The scheme uses linear functions in the interior of mesh elements and constants on edges (2D) or faces (3D), respectively, to approximate the displacement. An ������(������������������)- conforming displacement reconstruction operator is employed to modify test functions in the right-hand side of the discrete form, in order to eliminate the dependence of the ������������������������ parameter ������ in error estimates, i.e., making the scheme locking-free. The method works without requiring ������|| backward difference center dot u||1 to be bounded. We prove optimal error estimates, independent of ������ , in both the ������1-norm and the ������2-norm. Numerical experiments validate that the method is effective and locking-free.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 50 条