Numerical ranges of companion matrices: flat portions on the boundary

被引:6
|
作者
Eldred, Jeffrey [2 ]
Rodman, Leiba [1 ]
Spitkovsky, Ilya [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2012年 / 60卷 / 11-12期
关键词
numerical range; companion matrix;
D O I
10.1080/03081087.2011.634415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Criterion for a companion matrix to have a certain number of flat portions on the boundary of its numerical range is given. The criterion is specialized to the cases of 3 x 3 and 4 x 4 matrices. In the latter case, it is proved that a 4 x 4 unitarily irreducible companion matrix cannot have three flat portions on the boundary of its numerical range. Numerical examples are given to illustrate the main results.
引用
收藏
页码:1295 / 1311
页数:17
相关论文
共 50 条
  • [41] NUMERICAL RANGES AND COMPRESSIONS OF Sn-MATRICES
    Gau, Hwa-Long
    Wu, Pei Yuan
    OPERATORS AND MATRICES, 2013, 7 (02): : 465 - 476
  • [42] Diagonals and numerical ranges of direct sums of matrices
    Lee, Hsin-Yi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) : 2584 - 2597
  • [43] Diagonals and numerical ranges of weighted shift matrices
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 514 - 532
  • [44] Refinements for numerical ranges of weighted shift matrices
    Tsai, Ming-Cheng
    Gau, Hwa-Long
    Wang, Han-Chun
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (05): : 568 - 578
  • [45] Quaternionic Numerical Ranges of Normal Quaternion Matrices
    Feng Lianggui
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 100 - 106
  • [46] BOUNDARY OF NUMERICAL RANGES - PRELIMINARY REPORT
    RADJABALIPOUR, M
    RADJAVI, H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A573 - A573
  • [47] BOUNDARY POINTS OF JOINT NUMERICAL RANGES
    CHO, M
    TAKAGUCHI, M
    PACIFIC JOURNAL OF MATHEMATICS, 1981, 95 (01) : 27 - 35
  • [48] The boundary of higher rank numerical ranges
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2971 - 2985
  • [49] Determinantal and eigenvalue inequalities for matrices with numerical ranges in a sector
    Li, Chi-Kwong
    Sze, Nung-Sing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) : 487 - 491
  • [50] On the Elliptic Numerical Ranges of 4 x 4 Matrices
    Dong, Chuandai
    Fang, Hualing
    Liu, Xueting
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2009, : 413 - 416