Numerical ranges of companion matrices: flat portions on the boundary

被引:6
|
作者
Eldred, Jeffrey [2 ]
Rodman, Leiba [1 ]
Spitkovsky, Ilya [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2012年 / 60卷 / 11-12期
关键词
numerical range; companion matrix;
D O I
10.1080/03081087.2011.634415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Criterion for a companion matrix to have a certain number of flat portions on the boundary of its numerical range is given. The criterion is specialized to the cases of 3 x 3 and 4 x 4 matrices. In the latter case, it is proved that a 4 x 4 unitarily irreducible companion matrix cannot have three flat portions on the boundary of its numerical range. Numerical examples are given to illustrate the main results.
引用
收藏
页码:1295 / 1311
页数:17
相关论文
共 50 条
  • [31] Joint numerical ranges and commutativity of matrices
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Wang, Ya-Shu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [32] Numerical ranges of weighted shift matrices
    Tsai, Ming Cheng
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 243 - 254
  • [33] On the boundary of numerical ranges of operators
    Zhang, Hai-Yan
    Dou, Yan-Ni
    Wang, Mei-Feng
    Du, Hong-Ke
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 620 - 622
  • [34] On the boundary of weighted numerical ranges
    Cheung, Wai-Shun
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (01): : 78 - 86
  • [35] HERMITIAN OCTONION MATRICES AND NUMERICAL RANGES
    Rodman, Leiba
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 515 - 533
  • [36] Numerical ranges of large Toeplitz matrices
    Roch, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 282 (1-3) : 185 - 198
  • [37] 3x3 matrices with a flat portion on the boundary of the numerical range
    Rodman, L
    Spitkovsky, IM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 : 193 - 207
  • [38] The normalized numerical ranges of 2 × 2 matrices
    L. Z. Gevorgyan
    Journal of Contemporary Mathematical Analysis, 2011, 46 : 243 - 251
  • [39] HIGHER RANK NUMERICAL RANGES OF RECTANGULAR MATRICES
    Zahraei, Mohsen
    Aghamollaei, Gholamreza
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (02): : 133 - 142
  • [40] HIGHER RANK NUMERICAL RANGES OF NORMAL MATRICES
    Gau, Hwa-Long
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (01) : 23 - 43