The level crossings of random polynomials

被引:1
|
作者
Farahmand, K
机构
[1] Department of Mathematics, University of Ulster, Jordanstown, Co.
关键词
D O I
10.1016/0893-9659(95)00096-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper investigates the properties of the expected number of real zeros and K-level crossings of random trigonometric polynomials a(1) sin theta + a(2) sin 2 theta +...+ a(n) sin n theta, where a(j), j = 1, 2,..., n are independent normally distributed random variables. It is shown that the result for K = 0 remains valid for any K such that K = O(n(a)) where 0 less than or equal to alpha < 1/2 is a constant.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 50 条