Fast Multimodulus Blind Deconvolution Algorithms

被引:4
|
作者
Mayyala, Qadri [1 ]
Abed-Meraim, Karim [2 ]
Zerguine, Azzedine [3 ,4 ]
Lawal, Abdulmajid [3 ,4 ]
机构
[1] Birzeit Univ, Elect & Comp Engn Dept, Birzeit 627, Palestine
[2] Univ Orleans, PRISME Lab, Inst Univ France IUF, F-45100 Orleans, France
[3] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Ctr Commun Syst & Sensing, Dhahran 31261, Saudi Arabia
关键词
Deconvolution; Quadrature amplitude modulation; Wireless communication; Convergence; Blind source separation; MIMO communication; Training; Blind deconvolution; blind source separation; fixed point optimization; multi-modulus algorithm; SOURCE SEPARATION; EQUALIZATION; IDENTIFICATION; BOUNDS;
D O I
10.1109/TWC.2022.3178480
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel class of fast Multi-Modulus algorithms (fastMMA) for Blind Source Separation (BSS) and deconvolution are presented in this work. These are obtained through a fast fixed-point optimization rule used to minimize the Multi-Modulus (MM) criterion. Here, two BSS versions are provided to separate the sources either by finding the separation matrix at once or by separating a single source each time using a fast deflation technique. Further, the latter method is extended to cover systems of convolutive nature. Interestingly, these algorithms are implicitly shown to belong to the fixed step-size gradient descent family, henceforth, an algebraic variable step-size is proposed to make these algorithms converge even much faster. Apart from being computationally and performance-wise attractive, the new algorithms are free of any user-defined parameters.
引用
收藏
页码:9627 / 9637
页数:11
相关论文
共 50 条
  • [41] Robust eigenvector algorithms for blind deconvolution of MIMO linear channels
    Kawamoto, Mitsuru
    Kohno, Kiyotaka
    Inouye, Yujiro
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 729 - +
  • [42] ICA and genetic algorithms for blind signal and image deconvolution and deblurring
    Yin, Hujun
    Hussain, Israr
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS, 2006, 4224 : 595 - 603
  • [43] Eigenvector algorithms for blind deconvolution of MIMO-IIR systems
    Kawamoto, Mitsuru
    Kohno, Kiyotaka
    Inouye, Yujiro
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 3486 - +
  • [44] Robust Eigenvector Algorithms for Blind Deconvolution of MIMO Linear Systems
    Mitsuru Kawamoto
    Kiyotaka Kohno
    Yujiro Inouye
    Circuits, Systems & Signal Processing, 2007, 26 : 473 - 494
  • [45] Fast nonlinear blind deconvolution for rotating machinery fault diagnosis
    Zhang, Zongzhen
    Wang, Jinrui
    Li, Shunming
    Han, Baokun
    Jiang, Xingxing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 187
  • [46] Robust Multichannel Blind Deconvolution via Fast Alternating Minimization
    Sroubek, Filip
    Milanfar, Peyman
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) : 1687 - 1700
  • [47] A fast blind deconvolution algorithm using decorrelation and block matrix
    Yang, Jun-An
    He, Xuefan
    Jiang, Yunxiao
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2007, : 394 - +
  • [48] Fast Bayesian blind deconvolution with Huber Super Gaussian priors
    Zhou, Xu
    Vega, Miguel
    Zhou, Fugen
    Molina, Rafael
    Katsaggelos, Aggelos K.
    DIGITAL SIGNAL PROCESSING, 2017, 60 : 122 - 133
  • [49] Secure Massive IoT Using Hierarchical Fast Blind Deconvolution
    Wunder, Gerhard
    Roth, Ingo
    Fritschek, Rick
    Gross, Benedikt
    Eisert, Jens
    2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2018, : 119 - 124
  • [50] QUASI-NEWTON MULTIMODULUS BLIND EQUALIZATION ALGORITHM
    Paracha, Kashif N.
    Zerguine, Azzedine
    2009 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2009), 2009, : 151 - +