Fast Multimodulus Blind Deconvolution Algorithms

被引:4
|
作者
Mayyala, Qadri [1 ]
Abed-Meraim, Karim [2 ]
Zerguine, Azzedine [3 ,4 ]
Lawal, Abdulmajid [3 ,4 ]
机构
[1] Birzeit Univ, Elect & Comp Engn Dept, Birzeit 627, Palestine
[2] Univ Orleans, PRISME Lab, Inst Univ France IUF, F-45100 Orleans, France
[3] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Ctr Commun Syst & Sensing, Dhahran 31261, Saudi Arabia
关键词
Deconvolution; Quadrature amplitude modulation; Wireless communication; Convergence; Blind source separation; MIMO communication; Training; Blind deconvolution; blind source separation; fixed point optimization; multi-modulus algorithm; SOURCE SEPARATION; EQUALIZATION; IDENTIFICATION; BOUNDS;
D O I
10.1109/TWC.2022.3178480
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel class of fast Multi-Modulus algorithms (fastMMA) for Blind Source Separation (BSS) and deconvolution are presented in this work. These are obtained through a fast fixed-point optimization rule used to minimize the Multi-Modulus (MM) criterion. Here, two BSS versions are provided to separate the sources either by finding the separation matrix at once or by separating a single source each time using a fast deflation technique. Further, the latter method is extended to cover systems of convolutive nature. Interestingly, these algorithms are implicitly shown to belong to the fixed step-size gradient descent family, henceforth, an algebraic variable step-size is proposed to make these algorithms converge even much faster. Apart from being computationally and performance-wise attractive, the new algorithms are free of any user-defined parameters.
引用
收藏
页码:9627 / 9637
页数:11
相关论文
共 50 条
  • [31] Fast relative newton algorithm for blind deconvolution of images
    Bronstein, AM
    Zibulevsky, M
    Zeevi, YY
    Bronstein, MM
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1233 - 1236
  • [32] Blind source separation and deconvolution of fast sampled signals
    Back, AD
    Cichocki, A
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 637 - 640
  • [33] Lanczos-based fast blind deconvolution methods
    Dykes, L.
    Ramlau, R.
    Reichel, L.
    Soodhalter, K. M.
    Wagner, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382
  • [34] New multimodulus blind equalization algorithm with relaxation
    Abrar, Shafayat
    Shah, Syed Ismail
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 425 - 428
  • [35] Mean square error analyses of multichannel blind deconvolution algorithms
    Sun, X
    Douglas, SC
    CONFERENCE RECORD OF THE THIRTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2001, : 648 - 652
  • [36] On the use of Lyapunov criteria to analyze the convergence of blind deconvolution algorithms
    Kundur, D
    Hatzinakos, D
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (11) : 2918 - 2925
  • [37] Gradient adaptive algorithms for contrast-based blind deconvolution
    Douglas, SC
    Kung, SY
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2000, 26 (1-2): : 47 - 60
  • [38] Iterative algorithms based on multistage criteria for multichannel blind deconvolution
    Inouye, Y
    Sato, T
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (06) : 1759 - 1764
  • [39] Robust eigenvector algorithms for blind deconvolution of MIMO linear systems
    Kawamoto, Mitsuru
    Kohno, Kiyotaka
    Inouye, Yujiro
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2007, 26 (04) : 473 - 494
  • [40] Gradient Adaptive Algorithms for Contrast-Based Blind Deconvolution
    Scott C. Douglas
    S.-Y. Kung
    Journal of VLSI signal processing systems for signal, image and video technology, 2000, 26 : 47 - 60