A denoising scheme for DSPI fringes based on fast bi-dimensional ensemble empirical mode decomposition and BIMF energy estimation

被引:16
|
作者
Zhou, Yi [1 ]
Li, Hongguang [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Digital speckle pattern interferometry; Speckle noise; Denoising; Fast bi-dimensional ensemble empirical; mode decomposition; BIMF energy estimation; SPECKLE-PATTERN INTERFEROMETRY; WAVELET TRANSFORM; NOISE-REDUCTION; SIGNALS; DEFORMATIONS; FILTER;
D O I
10.1016/j.ymssp.2012.09.009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Digital speckle pattern interferometry (DSPI) is a new and efficient technique for measuring the difference in out-of-plane displacement. However, DSPI fringes contain low spatial information degraded with random speckle noise and background intensity. A denoising scheme based on fast bi-dimensional ensemble empirical mode decomposition (FBEEMD) and energy estimation of bi-dimensional intrinsic mode function (BIMF) is proposed to reduce speckle noise in this paper. Furthermore, the denoising scheme is compared with other denoising methods, and evaluated quantitatively using computer-simulated and experimental DSPI fringes. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条
  • [41] Spot Edge Detection in Microarray Images Using Bi-Dimensional Empirical Mode Decomposition
    Harikiran, J.
    NarasimhaRao, Y.
    Saichandana, B.
    Lakshmi, P. V.
    Kumar, R. Kiran
    2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 : 227 - 231
  • [42] A method for underwater image analysis using bi-dimensional empirical mode decomposition technique
    Bo, Liu
    Yan, Lin
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2012, 2 (02): : 137 - 145
  • [43] A fast and adaptive bi-dimensional empirical mode decomposition approach for filtering of workpiece surfaces using high definition metrology
    Du, Shichang
    Liu, Tao
    Huang, Delin
    Li, Guilong
    JOURNAL OF MANUFACTURING SYSTEMS, 2018, 46 : 247 - 263
  • [44] Bi-dimensional empirical mode decomposition (BEMD) algorithm based on particle swarm optimization-fractal interpolation
    An, Feng-Ping
    Liu, Zhi-Wen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (12) : 17239 - 17264
  • [45] Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns
    Zhou, Xiang
    Podoleanu, Adrian Gh.
    Yang, Zhuangqun
    Yang, Tao
    Zhao, Hong
    OPTICS EXPRESS, 2012, 20 (22): : 24247 - 24262
  • [46] Bi-dimensional empirical mode decomposition (BEMD) algorithm based on particle swarm optimization-fractal interpolation
    Feng-Ping An
    Zhi-Wen Liu
    Multimedia Tools and Applications, 2019, 78 : 17239 - 17264
  • [47] Improved bi-dimensional empirical mode decomposition based on 2D-assisted signals: analysis and application
    Xu, G. L.
    Wang, X. T.
    Xu, X. G.
    IET IMAGE PROCESSING, 2011, 5 (03) : 205 - 221
  • [48] Computer-aided diagnosis of breast cancer using bi-dimensional empirical mode decomposition
    Varun Bajaj
    Mayank Pawar
    Vinod Kumar Meena
    Mukesh Kumar
    Abdulkadir Sengur
    Yanhui Guo
    Neural Computing and Applications, 2019, 31 : 3307 - 3315
  • [49] Pulse Wave Denoising Based on Improved Complementary Ensemble Empirical Mode Decomposition
    Chen Yong
    Yao Zhimin
    Liu Huanlin
    Liao Junpeng
    Xu Li
    Feng Yanqing
    ACTA OPTICA SINICA, 2024, 44 (07)
  • [50] APPLICATION OF BI-DIMENSIONAL EMPIRICAL MODE DECOMPOSITION (BEMD) IN EXTRACTION OF PLATINUM AND PALLADIUM ANOMALIES FEATURES
    Jian, Zhenzhen
    Zhao, Binbin
    Chen, Yongqing
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2012, 4 (1-2)